七年級數(shù)學下冊 11.3 不等式的性質(zhì)課件 (新版)蘇科版.ppt
《七年級數(shù)學下冊 11.3 不等式的性質(zhì)課件 (新版)蘇科版.ppt》由會員分享,可在線閱讀,更多相關《七年級數(shù)學下冊 11.3 不等式的性質(zhì)課件 (新版)蘇科版.ppt(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。
11.3 不等式的性質(zhì),小新栽了一棵小樹,小樹的高度是60cm,8周后,他發(fā)現(xiàn)小樹長高了,且高度超過了100cm,問小樹每周長高多少厘米?,試一試,解:設小樹每周長高xcm,由題意可列不等式為,60+8x>100,,,,,a,b,如圖,電梯里有兩個人,身高分別是am和bm,其中a>b.,當電梯升高6m時,兩人相對于原來的高度分別是 和 .,a+6,b+6,則有,a+6,b+6,>,當電梯下降3m時,則有:,a-3,b-3,>,探究一,,歸納,一般地,如果ab,那么a+c ___ b+c (或a-c ___b-c),,,,不等式的性質(zhì)1:,不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.,結(jié)論:,,回憶:,不等式的性質(zhì)1與哪條等式的性質(zhì)相似?,等式的性質(zhì):,1. 等式兩邊都加上或減去同一個數(shù)(或同一個整式),等式仍成立.,根據(jù)等式的性質(zhì)2,你能說出不等式的其他性質(zhì)嗎?,2. 等式兩邊都乘或除以同一個數(shù)(除數(shù)不為0),等式仍成立.,猜一猜:,,不等式的兩邊都乘(或除以)同一個數(shù),不等號的方向都不變?,請你將不等式6>3的兩邊分別乘同一個數(shù),再比較積的大小。,探究二,,你有什么發(fā)現(xiàn)?,1. 若a>b,則 2a 2b; -2a -2b;,2. 若a>b, c > 0,則 ac bc;,3. 若a>b, c < 0,則 ac bc;,>,<,>,<,不等式的性質(zhì)2:,不等式的兩邊都乘(或除以)同一個 ,不等號的方向不變; 不等式的兩邊都乘(或除以)同一個 ,不等號的方向改變.,正數(shù),負數(shù),議一議,歸納:,,1. 不等式的兩邊都乘以0,結(jié)果又怎樣?,2. 不等式的性質(zhì)與等式的性質(zhì)有什么相同點、 不同點?,結(jié)果變?yōu)楹愕仁剑? = 0.,,,,,不等式與等式的性質(zhì)比較,等式兩邊加上(減去)同一個數(shù)成同一個整式,方程仍成立,等式兩邊都乘以(或除以)同一個正數(shù),方程仍成立,不等式的兩邊加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變,,不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變,相同,相同,不相同,練一練,1.已知ab,用“>”或“<”號填空:,,,,,,,,,(11) 若 b c,則 a c .,(12) 若c d,則 a+c b+d .,,,,,下面各題的結(jié)論對嗎?請說出你的觀點和理由: ⑴ 如果 a+8>4,那么a>-4; ( ) ⑵ 如果 2x>-4,那么x>-2; ( ) ⑶ 因為-0.5m-1,所以m>2; ( ) ⑷ 如果3xx,那么2x0; ( ) ⑸ 如果a>b,那么ac2>bc2; ( ) ⑹ 如果ac2>bc2,那么a>b. ( ),看誰說的好!,x>4,x<-1.5,x <1.5,將下列不等式化成“x>a”或“x<a”的形式: (1)x - 5>-1 (2)-2x>3 (3)2x- 1<2 (4)2x <,x >-,例題,小新栽了一棵小樹,小樹的高度是60cm,8周后,他發(fā)現(xiàn)小樹長高了,且高度超過了100cm,問小樹每周長高多少厘米?,你能利用不等式的性質(zhì)化簡嗎?,解:設小樹每周長高xcm,由題意可列不等式為,60+8x>100,不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.,1.不等式的性質(zhì)1:,2.不等式的性質(zhì)2:,不等式的兩邊都乘(或除以)同個正數(shù),不等號的方向不變;不等式的兩邊都乘(或除以)同一個負數(shù),不等號的方向改變.,3.可根據(jù)不等式的性質(zhì),把不等式進行變形,化為x >a或x <a的形式.,1. 請用不等式表示:“如果實數(shù)a是負數(shù),那么它的相反數(shù)是正數(shù)”.,2. 將不等式mx>m(m≠0)的兩邊都除以m,可得到哪些結(jié)論?,如果a<0,那么- a >0.,當m>0時, x>1; m < 0時, x < 1.,3. 該不等式的變形錯在哪里? 將不等式2x>4x 的兩邊都除以x,得2 >4.,4. 把不等式-1> x變形為x <- 1,你覺得對嗎?,,已知不等式 (m-1)x m-1 的解集為 x 1 ,求m的范圍。,,考考你,挑戰(zhàn)新高,,,,,,,,根據(jù)不等式的性質(zhì),我們可以得到比較兩個數(shù)的大小的方法“作差法”:,(1)若 ,則AB; (2)若 ,則A=B; (3)若 ,則AB;,試判斷下列各對整式的大小: (1) (2),和-2m+5;,和-4a+1.,看誰答的快!,⑴ x- 3 >0 , x , ⑵ x + 5 < 2, x , ⑶ 3x ≥ -9, x , ⑷ -3x ≤ 0, x , ⑸ x > x, x , ⑹ 6-2x>0, x ,,> 3,< -3,≥ -3,≥ 0,> 0,< 3,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 七年級數(shù)學下冊 11.3 不等式的性質(zhì)課件 新版蘇科版 年級 數(shù)學 下冊 不等式 性質(zhì) 課件 新版 蘇科版
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.wymoca.com/p-1781458.html