對價值流優(yōu)化方法應用的公司在建筑行業(yè)的協(xié)作網絡【中文4800字】【PDF+中文WORD】
對價值流優(yōu)化方法應用的公司在建筑行業(yè)的協(xié)作網絡【中文4800字】【PDF+中文WORD】,中文4800字,PDF+中文WORD,價值,優(yōu)化,方法,應用,公司,建筑行業(yè),協(xié)作,網絡,中文,4800,PDF,WORD
【中文4800字】
對價值流優(yōu)化方法應用的公司在建筑行業(yè)的協(xié)作網絡
摘 要
盡管汽車和航空航天工業(yè)中使用自動化技術和工藝及應用的精益制造方式是時下常見的,建筑行業(yè)的這些發(fā)展相對落后。
在此背景下,在價值流設計的幫助下,主要以大規(guī)模生產但最近也變密集的制造業(yè),該工藝流程在單個公司或者這樣的合作伙伴下,協(xié)作網絡可以在一個高度以客戶為導向的有效方式設計。因此,本文詳細介紹了一種方法來設計的集成和定制的價值流建筑業(yè)要求,該方法的開發(fā)和基于應用研究與合作項目的驗證.
關鍵詞:生產過程;定制。
1. 簡介
早在60年代初,該目標的工業(yè)化建設價值鏈是在為了對抗在低競爭力的歐洲國家成本效率和施工成本大幅降低,通過理順施工過程中,施工預制元素和建設創(chuàng)新發(fā)展的機械鏈。
后來,隨著發(fā)展方法的精益求精,豐田的生產系統(tǒng)甚至是新的組織方法建筑業(yè)都是可以使用的。盡管這些優(yōu)化建筑活動在積極的推動和研究這個行業(yè),但是只有少數的項目是可以實現的。
在這樣的背景下,勞動力的生產率幅度可以檢測建筑工業(yè)的施工。這個幅度的量在1995到2007年意大利約為15%。在職業(yè)領域安全和供應鏈的材料管理的重大缺陷可以被檢測到,這是勞動力市場的能力下降的原因。最近的研究已經證明了顯示的建筑業(yè)潛在的成本和時間為最低可以節(jié)省約30%的工藝優(yōu)化。作為一個結果,超過30%的人是不奇怪的,但是這樣引起了正在工作過程中參與施工企業(yè)的不滿。
建筑業(yè)的另一個根本問題,就是行業(yè)間包括的項目:這需要競爭,而競爭中重要的則是成本集中,最低報價贏得話,在非常保守的行業(yè)投資時間、金錢或能源進行創(chuàng)新,從而實現唯一的增量變化。上述原因的共同作用,導致了一個惡性循環(huán),產生了一個競爭的無形壓力,尤其是中小型企業(yè)在建設部門和建筑相關行業(yè)受到更大的影響。
由于這些問題,使合作的目的成為制定和實施合作項目平臺,對于一個工業(yè)化,集成化和智能化公司的建設,創(chuàng)建4個未來財團有限公司由意大利的博爾扎諾省和由意大利夫瑯和費所協(xié)調一致的(IEC創(chuàng)新工程中心)。它涉及到的12個意大利負責建設、施工等相關產業(yè),由一個跨學科的研究團隊—意大利得而夫瑯和費、博爾扎諾大學的自由機構和組織成的創(chuàng)新園。創(chuàng)建4個未來是重新思考和重新設計整個價值鏈,是從其他行業(yè)吸取所定制的建設涉及不同的選手的一個離散的數量,并達到一個水平的效率和產業(yè)化的目的。
2. 價值流的工程方法
價值流可以被定義為每一筆具體的行動在一定的的時間制造的產品。在這種情況下,原材料的物理轉化到成品以及因此所需信息管理必須被視為價值流。為了能夠看到,特別是理解價值流,一個精益的生產的方法稱為價值流設計,并建立了描述和優(yōu)化了生產過程。價值流設計支持工藝工程師把價值流比作精益求精的眼睛,十分喜歡戴,因為在不久之后便被一本刊物概括了起來。在這本刊物提出了指南來消除浪費的頻繁,同時增值的過程,用來分享。價值流圖的概念被首次受到重視,特別是對汽車產業(yè)實施有限的變異數系列生產后,來它擴大到各個行業(yè)和部門。在此基礎上,研究工業(yè)工程的研究所(IAO)改編價值流設計方法,是以單件小批量生產的具體需求與產品類型和變異的多樣性的方法。由此產生的方法,稱為值流工程,采用工程模式,這是首次開發(fā)的方法,然后被標準化并投射。因此,在工業(yè)企業(yè)實施過程模式經常將根據運行情況實施,這種方法使得它可能代表的工作歷程的每一步,及時前面的間接活動(例如開發(fā)),從生產到客戶完全可以全部涉及。此外,價值流工程讓工藝工程師不只是可視化的分析一個價值流特定的產品組,而且對不同產品可以合并到一個流程圖中。除此之外,甚至可以為不同的客戶群體進行考慮,可使用的資源由不同的產品或客戶群體提出,由此確定并安排在一起使方法更加簡單。因此,本價值流的工程方法是專為單件小批量生產效率的提高,產品類型的轉變和變異的多樣性做準備的。
3. 施工過程的定制方法
對價值流工程的基礎設計,尤其在建設工程中,一個進程的映射需要整合不同工藝貿易企業(yè),使它們沿著基于價值鏈的概念進行優(yōu)化,并建立過程和組織。這樣的概念將現有的精細化管理和精細化建設的方法,以及創(chuàng)新的契約方法進行折合處理。
此外,相對于其他行業(yè),其一個整體施工過程必須擁有高度的靈活性和適應性,尤其是產品方面,而這些過程都是建筑公司不能操作的。一個固定的目標過程,因為依據客戶不斷變化的要求從一個項目到下一個。因此,合作的理想映射過程是建設項目是一個定制的集成不同精細化貿易的過程,并且使設計根據某工程的個人需求完成項目。價值流的工程方法代表強烈的結構化業(yè)務建模過程,主要包括間隙從定制系列生產。因此我們在建筑業(yè)從系列的初步階段的代表隊單件生產,價值流工程以作為新的發(fā)展的基礎定制的映射方法,描述了下面的章節(jié)。
3.1.分類客戶需求定義場景
隨著各類建筑工程的各種不同(如工業(yè)建筑相比私人住宅建筑),建筑特點采取對個別施工帶來很大的影響工程,從而對交易執(zhí)行過程帶來影響。為了使這一特定特征的建筑行業(yè)更清晰,圖1示例演示了三個不同的用戶場景其主要在三個直接的啟示項目管理:質量,成本和時間。他們表現出不同的說明,影響個體建筑的是施工過程中傾入不同的項目,每個交易過程中都有條件復雜的內部闡述,這個稱為了有效模板。因此,大多數中小型工業(yè)貿易企業(yè)(大約90%的歐洲建設工業(yè))合作,同時在不同類型的項目需要艾弗里高性能的柔性水平進行研究。為了介紹建筑的項目的分類,最顯著的特點是具有影響和可能的規(guī)格集思廣益的項目。在為了將這些規(guī)格一致客戶的情況下,形態(tài)箱是接受了作為一種科學的方式。在此基礎上,客戶的情況需要定義,特別是對當地市場進行定義。作為一個例子,這樣的客戶情況典型的南蒂羅爾的木屋,繼現代和個人的設計可以明明。區(qū)分不同客戶的要求的情況下,在三個主要的基礎上定義的在工程項目管理的目標。根據這個,主要是低成本,低項目時間的同時,客戶的最關鍵需求是高質量。除初步測定這三個項目的目標通過規(guī)劃,甚至在執(zhí)行過過程中的基礎性客戶。因此,三個類別定義的要求是:成本的依從性,合規(guī)性和施工時間質量合格。此外,該成本費用分為投資成本和運行費用,質量是另外劃分為生態(tài)系統(tǒng)的使用,舒適的生活環(huán)境,建筑的易變性,還有客戶的各種需求。單一的要求,現在可以根據其相關的研究客戶的情況選擇著重情況。因此,該方法配對的比較是用來排名的替代解決方案預定義的標準進行直接比較,以每一個單一的選擇與所有其他的選擇。有排名的替代品后,他們可以加權到后來進行取芯模型分析。并且對客戶的要求進行排序與取重點,并使其成為一個實例。圖2為客戶的情況。
圖1. 不同的用戶場景暗示了不同的施工過程
圖2.客戶需求的權重
2.2. 展開和精益優(yōu)化建模過程模式
過程模式的發(fā)展完成了基于在建筑行業(yè)問題分析,并進行了創(chuàng)建4個未來的項目。這些分析導致一個更好的理解——組織機構和高度結構化的過程分散的建筑業(yè)。因此,四個主要領域可確定的行動:
1. 在神經網絡優(yōu)化的管理和控制施工組織與信息(技術)
2. 施工現場物流化(接口生產建設的網站)
3. 規(guī)劃和執(zhí)行機構(加強)
4. 智能化管理
以這些領域的行動作為切入點的過程模式的發(fā)展,從這里開始,一個定義的目錄的措施,使研究小組系統(tǒng)的提高對領域采用精益原則的行動。對此措施的一個例子:在施工過程中的優(yōu)化規(guī)劃與控制執(zhí)行(表1)的實施規(guī)劃過程模式,(圖3)可以被此命名。這個規(guī)劃系統(tǒng)是一個控制系統(tǒng),它促進規(guī)劃的實施和執(zhí)行,是對跨學科的現場特別有幫助的組織與管理模式。
圖3. 時間規(guī)劃過程的可視化模式
表1.功能性集群與發(fā)展流程模式
優(yōu)化施工現場的例子:物流(表2)是一個精益物流過程模式的建筑工地,被稱為“奶?!薄5侥壳盀橹箤κ┕がF場材料供應可以以一種創(chuàng)新的交付,并與建筑相關聯。另一個物流措施實施的“時間”的過程模式,合理的預制客戶特定的產品在產業(yè)與供應及時對施工現場模式的過程中做的一個根據標準化的價值流工程無不好。
然而,調整價值變換工程施工方法,幾個符號需要更改或添加為標準,在一個合適的能夠描述施工過程的方法。進一步適應建筑行業(yè)的工作,必要時,考慮項目產品與合同相關的框架結構。
在研究實際的舞臺,下面的過程模式4個功能群有氮的測定,為了能夠選擇一個功能聚類過程模式需要進行評估,對他們的領域應用的正確過程模式。在這樣的背景下,集群2需要進行評估:1預加工或裝配的適用性和公關,2施工現場制作或施工現場裝配,3集群4的過程中的適用性不同類型的材料(建設模式材料,建筑構件,間接材料和操作材料),4用于工作需要進行評估。
發(fā)展精益流程模式從目錄的措施后,他們的客戶情況調查的使用性需要評估。因此,以下4個階段過么評估申請在一個部分介紹客貨所需要的要求。
3.3. 過程模式根據客戶要求選擇
在這一部分中,來自個人客戶的情況與精益優(yōu)化過程模式要求匹配將有所描述。
選擇的方法是使用評分模型對選擇從四個功能群對后來設計適當的過程模式研究施工工藝流程圖。
1. 評分模型確定第一單值
2. 基于加權配對比較效益
3. 項目要求和評價過程模式
4. 從理想的過程模式得到最高的效益價值,從而達到適合于繪制施工過程。
使用這個為過程模式的方法,可以根據一個人價值流精益思維原理進行設計。從功能集群2選擇流程模式4,同時其應用領域是決定性的。因此,僅適用于調查案件的處理模式被考慮。
表2. 四個階段規(guī)模評估說明
4.案例研究
自定義方法的適用性上,為客戶場景的木制房屋在中價位段的第一個原型的價值流進行了驗證。
4.1. 中產階級客戶方案的木房子簡介
調查客戶案例代表一個公關制造住宅的木房子,柱和梁的施工技術,客戶類型設置交鑰匙訂單處理(總承包商)于高價值,低價和生態(tài)建設。
該建筑技術使各種建筑元素,并在后來裝配在施工現場的個人預先制作。公關制造的元件,從而定制的基于標準化建設配置
該項目的處理過程為特定的客戶場景開始于客戶訂單的入口,與之前的概念設計和取樣槽的構造函數。此后,制作圖紙的各種結構元件被設計并傳送到內部和外部捏造。對施工現場的建筑元素的最終組裝完成后,該項目是由構造函數和準備占領接受。
為了更好地理解流程,專家訪談和對公關制造和施工現場組裝的現場分析已經進行了在魯布納豪斯公司,一家國際知名的意大利的木房子廠家
4.2 選擇合適的工藝模式和價值流圖的設計
基于客戶的情況下“中產階級的中木房子”加權值得要求計算了單進程模式的效益。為過程模式中各功能群的圖像顯示的最高值效益選定設計價值流。這種選擇是所示在下面過程模式的四個功能群中:
上述選擇的過程模式為自定義原型過程圖的一體化是如圖4所示。這一步都是手工完成的,真的能夠自定義的流程模式之間的接口。為了白紙映射簡單易懂的最大A3頁大小使用MS功率點模版完成。
從右上方的AP構造函數訂貨和規(guī)劃階段開始,根據選定的配置命令處理項目,圖紙都是從技術的公司內部和外部的預加工的分布。
對預加工和裝配在施工現場生產控制進行協(xié)作,根據規(guī)劃過程模式構建的元素,如墻壁或天花板元素公關制造,制造工業(yè)按照流程生產原理。各施工要素最終裝配使用施工現場的生產進行了。
對于采購物流,對建筑材料交付的主要“牛奶”的概念,如木材,選擇。
對于內部物流,超市的概念:結合“取貨”的實施,建筑元素,如窗戶,門或外立面,建議將規(guī)劃控制的使用場所根據及時的原則。其他調試材料,為最終的裝配需要,委托和供應商/貿易交付施工現場。
表3. 選定的過程模式
圖4. 以價值流為原型的為客戶的情況制定的木房子
5. 結論
所提出的方法演示了如何設計一個集成和定制的建筑業(yè)價值流圖。到目前為止,只有有限的選擇過程模式已經在一個案例進行研究、開發(fā)和測試。
進一步的研究,特別是在開發(fā)、升級過程模式的建筑建設中是加強概念階段。因此,過程模式中描述的“投標前期的“策略和新的合作模式與建設績效獎勵將深入研究。
另外,過程模式將成為能夠處理甚至更好的避免施工中的許多規(guī)劃的變化,使建筑凍結和延遲減少的方法。因此,過程模式做了一個深思熟慮的變更使管理方法得到了闡述。為此,為不同的客戶方案流程圖做的設計應已驗證了本文提出的方法的合理性。
2212-8271 2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto Tetidoi:10.1016/j.procir.2013.09.069 Procedia CIRP 12 (2013)402 407 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering Adaptation of the value stream optimization approach to collaborative company networks in the construction industry D.T.Matta,b,D.Krausea,*,R.Raucha aInnovation Engineering Center,Fraunhofer Italia Research,Schlachthofstr.57,39100 Bozen,Ialy bFaculty of Science and Technology,Free University of Bolzano,Piazza Universit 5,39100 Bozen,Italy*Corresponding author.Tel.:+39-0471-1966914;fax:+39-0741-1966949.E-mail address:daniel.krausefraunhofer.it Abstract While in the automotive or aerospace industry the use of automation technology and processes and the application of lean manufacturing methods are common nowadays,the construction industry is lagging behind these developments.In this context,with the help of value stream design,largely known in mass production but recently also in variant intensive manufacturing,the process flows within single companies but especially amongst the partners in such a collaborative network can be designed in a highly customer-oriented and efficient way 1.Therefore,this paper describes in detail a methodology to design an integrated and customized value stream map for construction industries requirements.The approach was developed and verified based on a collaborative project of applied research with the 2012 The Authors.Published by Elsevier B.V.Selection and/or peer-review under responsibility of Professor Roberto Teti Keywords:Production;Process;Customization.1.Introduction Already in the early 60 the target of an industrialized construction value chain was followed in order to be more competitive against the growing low cost countries in Europe.Efficiency and construction costs were drastically reduced by rationalizing the construction process,pre-fabrication of construction elements and the development of innovative construction machines 2.Later,with the development of the Lean Thinking approach derived from the Toyota Production System 3,new organizational methodologies even for the construction industry were available.Despite these construction optimization activities,which were actively pushed by research as well as industry,only a few punctual projects could be realized.In this context,a significant margin of labor productivity can be detected for the construction industry.This margin amounts in Italy to about 15%from 1995 to 2007 4.Also in the fields of occupational safety and supply-chain and materials management significant deficiencies can be detected,which are compounded by the declining skills in the labor market 5.A recent study has proven potential cost and time savings trough process optimization of about 30%as realistic for the construction industry.As a consequence,it is not surprising that more than 30%of the people involved in construction business are unhappy with the processes they work with 6.Another fundamental problem of the construction industry consists in the competition for projects that is mainly cost focused:the cheapest bid wins and the very conservative industry invests little time,money or energy in innovation and thus realizes only incremental changes.The co-acting of the aforementioned factors leads to a negative spiral,which creates an increasing competitive pressure especially on small and medium sized enterprises(SME)in the construction sector and construction-related industries.Due to these problems,the cooperative and aims to develop and implement a cooperative project platform for an industrialised,integrated and intelligent 2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto TetiAvailable online at ScienceDirect403 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 construction 7build4future-consortium is co-funded by the Italian province of Bolzano and is coordinated by Fraunhofer Italia(IEC Innovation Engineering Center).It involves 12 Italian SMEsa from construction and construction related industries as well as an interdisciplinary research team formed by Fraunhofer Italia,the Free University of Bolzano,the South Tirolean CasaClima Agency and the TIS Innovation Park.Tbuild4future is to rethink and redesign the entire value chain for customized construction involving a discrete number of different players,and to reach a level of efficiency and industrialization known from other industries.2.The value stream engineering approach A value stream can be defined as the sum of every specific action within the manufacturing of a certain product 8.In this context,the physical transformation of raw materials to a finished product as well as the therefore needed information management must be considered for the value stream.In order to be able to see and in particular to understand the value stream,a lean production 3 method called value stream design was developed for the description and optimization of production processes.Value steam design supports the process engineer to visualize the value stream and the like wearing lean glasses,as 9 shortly sums it up.Within this publication the authors propose guidelines to eliminate waste increasing simultaneously the value added share of a process.The concept of value stream mapping was first implemented by the automotive industry especially for series production with limited variant number 10.Later it was expanded to various industries and branches.On this basis,the Fraunhofer Institute for Industrial Engineering(IAO)adapted the value stream design methodology to the specific needs of the single-part and small batch production with high diversity of product typologies and variants.The resulting approach,called value stream engineering,uses process patterns 11,which are first developed methodically,then standardized and finally projected.Thus,in industrial enterprises implemented process patterns are frequently projected according to the operational situation.This approach makes it possible to represent every step of the workflow,even preceding indirect activities(e.g.development),from customer to customer.Furthermore,a Alpi Fenster GmbH,Studio Arch.Ralf Dejaco,Erlacher Innenausbau KG,Euroclima AG,Eurotherm AG,EXPAN GmbH,Frener&Reifer Metallbau GmbH,Glas Mller Vetri AG,Lanz Metall GmbH,Plattner Bau AG,Tecno Spot GmbH value stream engineering enables the process engineer to not just visualize and analyze the value stream for a certain product group,but also for different product groups in one process map.Beside this,even different customer groups are considered.Thereby resources used by different product and/or customer groups can be identified and scheduled in an easier way.Thus,the value stream engineering approach is tailored for the single-part and small batch production with high diversity of product typologies and variants.3.Customized methodology for construction process design on the basis of value stream engineering In construction projects,a process map needs to integrate various different craft trade businesses along the value chain based on concepts optimizing the building process and organization.Such concepts may be existing lean management 12 or lean construction 13 methodologies as well as innovative contractual approaches 14,15 promoting cooperative project handling.Additionally,in contrast to other industries,the mapping of a holistic construction process has to be highly flexible and adaptable in terms of product and process as construction firms are not able to operate on basis of a fixed target process because of the changing customer requirements from one project to the next.Therefore,the ideal mapping process for cooperative construction projects is a customized integration of different lean trade processes,compounded and designed according to individual needs of a certain construction project.The value stream engineering approach for modeling and representing strongly structured business processes 16 covers mainly the gap from customized manufacturing to series production 10.As this represents a preliminary stage from the series production to the one-of-a-kind production,as we have in the building sector,the value stream engineering has been taken as a basis for the development of the new customized mapping methodology described in the following sections.3.1.Requirements definition for classified customer scenarios As various building projects can be very different(e.g.industrial buildings compared to private residential buildings),the building characteristics take a considerable influence on the individual construction process and thereby on the trades executing the processes 17.In order to make this specific characteristic of the building industry clearer,figure 1 exemplary illustrates three different customer scenarios 404 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 and their direct implication on the three main targets of project management that are quality,cost and time.Fig.1.Different customer scenarios implicate different constructionprocessesTheillustrationdemonstratesthe differentimplications of individual building projects on theconstruction process.Thesevery differentprojectconditions complicate the internal elaboration of an efficient template process for every single trade.Thus,the mostly small and medium sized craft tradebusinesses(about 90%of the European construction industry 18)collaborating simultaneously in different typologies of projects need to perform on a very highflexibility level.In order to introduce a classification of constructionprojects,the most significant characteristics havingimpact on the process and their possible specificationswere brainstormed within the-project.In order to combine thesespecifications to coherentcustomer scenarios,the morphological box 19 wasintroduced as a scientific methodology.On this basis,customer scenarios,especially for the local market were defined.As an example for such a customer scenario thetypical South Tyrolean wooden house,following a modern and individual design can be named.The requirements,distinguishing different customerscenarios,are defined on the basis of the three primary objectives in project management.According to this,primarily low costs,low project lead time and at thesame time high quality are the crucial requirements a customer demands.Beside the initial determination of those three project objectives trough planning,even thecompliance during execution is fundamental for thecustomer.Thus,three more requirements were defined:cost compliance,construction time compliance and quality compliance.Furthermore,the cost aspect is divided into investment cost and operating costs.Quality is in addition divided into ecological usage of resources,living comfort,architecture and mutability.Altogether,there are ten customer requirements.The single requirements can now be weighted according to their relevance for the investigatingcustomer scenario.Therefore,the method of paired comparison 19 is used to rank alternative solutionsregarding predefined criteria by directly comparingevery single alternative with every other alternative.After having ranked the alternatives,they can beweighted to afterwards carry out a scoring model analysis 19.The ranking and weighting of the ten identified requirements is shown for an exemplary customer scenario in figure 2.Fig.2.Weighting of the customer requirements3.2.Development and modeling of lean-optimized process patternsThe development of process patterns was done based on a problem analysis in construction industry also carried out within the build4future-project.These analyses lead to a better understanding of theprocess organization of the small-structured and highly fragmented construction industry.Thus,four main fieldsof action could be identified:1.Optimization of management and control during n nconstruction execution(organization and information technology)2.Optimization of construction site logistics(interface between production and construction site)3.Linkage of planning and execution(strengthening of 4.Intelligent Change ManagementThese fields of action were taken as a starting point for the development of process patterns.Starting there,a catalogue of measures was defined,which enables theresearch team to systematically improve the fields of action using lean principles.An example for a measureoptimizing the planning and control during construction execution(field 1),the implementation of thePlannerprocess pattern(Figure 3)can be named.TheLast Planner System20 is a control system,which405 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 promotes the implementation of execution planning and is particularly helpful forinterdisciplinary on sitemanagement and organization.An example for optimizing the construction sitelogistics(field 2)is a lean logistics process pattern for supply for the construction site could be delivered in aninnovative,building phase-related way.Another logistics measure implements a-in-pattern for a rational prefabrication of client-specificproducts inside the enterprise with a timely supply onthe construction site 7.The representation of the process pattern is doneaccording to the standardized value stream engineeringnotation.However,adapting the valuestream engineering approach to construction,several notation standards needed to be changed or added in order to beable to describe the construction processes in a suitableway.A further adaption to the construction industry willbe worked out when necessary,considering project-,product-and contract-related framework conditions.pFig.3Last Planner process pattern with timeline visualizationUntil the actual stage of the research,the followingfour functional clusters of process patterns have beendetermined:Table 1.Functional clusters and developed process patternsFunctional clusterProcess patternOrder fulfillmentEngineer-to-OrderConfigure-to-OrderOrganizational form of productionConstruction site productionWorkshop productionFlow productionProject controlCentral push-project control trough the siteforemanDecentralized pull-project control with Last PlannerProcurement logisticsReorder point controlled direct deliveryPlanning controlled direct deliveryProject plan determined direct deliveryPre-assembly and final-assembly by thesupplierCommissioning and final-assembly trough the supplier-construction sitesIn order to be able to select the right process pattern of a functional cluster,the process patterns need to beevaluated regarding their field of application.In thiscontext,for cluster 2 needs to be evaluated theapplicability for pre-fabrication or pre-assembly and construction site fabrication orconstruction site assembly.For cluster 4 the applicability of the process pattern for different types of material(building materials,building elements,indirect materials andoperating materials)21 and means for work need to beevaluated.After having developed lean process patterns deriving from the catalogue of measures,their applicability forthe investigating customer scenario(see 3.2)needs to beevaluated.Therefore,the following four-staged scaleevaluation is applied for the ten customer requirements introduced in section 3.1:Table 2.Description of the four-staged scale evaluationEvaluationDescriptionSuitableThe requirement is fulfilled by the process patternwithout any significant restrictionPartial suitableThe requirement cannot be fulfilled by the processpattern without any significant restrictionNot suitableThe requirement cannot be fulfilled by the processpattern;the process pattern is contradictory to theprocess patternNot relevantThe requirement is not influenced by the process pattern and is thus not relevant3.3.Selection of process patterns according to thecustomer requirementsIn this section,the matching of the requirementsderived from individual customer scenarios with the lean-optimized process patterns will be described.The selection approach uses the scoring model 19 toselect the appropriate process pattern from the four functional clusters to afterwards design the investigating construction process map.The scoring model determines first the single values of benefit based on the weighted paired comparison of the project requirements and the evaluated processpatterns.The ideal process pattern results from thehighest value of benefit reached and is thus suitable to beused for mapping the construction process.Using thisapproach for every cluster of process patterns,an individual value stream according to the lean thinkingprinciples can be designed.406 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 Selecting a process pattern from functional cluster 2and 4,also their field of application is decisive.Thus,only the process patterns applicable for the investigating case are considered.4.Case StudyThe applicability of the customized methodology was verified on a first prototype value stream for thecustomer scenario of wooden houses in the medium price segment.4.1.Introduction of the customer scenarioiddle class wooden houseThe investigating customer scenario represents a pre-fabricated residential wooden house with post-and-beam construction technique.The customer type sets a high value on turn-key order handling(general contractor),price guarantee and ecological construction 22.n nThe building technique enables an individual pre-fabrication of the various construction elements,whichare subsequently assembled on the construction site.Thepre-fabricated elements are thereby customized based on standardized construction configurations.The project handling process for the given customer scenario starts at the entrance of a customer order and precedes with the conceptual design and the sampling trough the constructor.Afterwards,the production drawings for the various construction elements aredesigned and sent to the internal and externalfabrications.After the final assembly of the construction elements on the construction site,the project is accepted by the constructor and ready to be occupied.In order to get a better understanding of theprocesses,expert interviews and on-site analysis of thepre-fabrication and the construction site assembly havebeen carried out at Rubner Haus AG,an internationally well known Italian wooden house manufacturer.4.2.Selection of suitable process patterns and design of the value stream mapBased on the weighted requirements for the customere values of benefit for the single process patterns are calculated.For every functional cluster of process patterns,the processpattern showing the highest value of benefit has to bechosen to design the value stream.This selection isshown for the four functional clusters of process patternsin the following:Table 3.Selected process patternsFunctional clusterProcess patternOrder fulfillmentConfigure-to-OrderOrganizationalform of productionPre-fabrication:flow productionFinal-assembly:construction site productionProject controlDecentralized pull-project control with Last PlannerProcurement logisticsBuilding materials:-Run with supermarketBuilding elements:Planning controlled direct delivery(Just-in-Time)Means for work:Commissioning and final-assembly trough the supplierIndirect and operating materials:Reorder point controlled direct delivery combined with-The integration of the above selected process patternsinto a customized prototype process map is illustrated in figure 4.This step has to be done manually,to really be able to customize the interface between the processpatterns.In order to keep the mapping simple and understandable it is done on a maximum A3 page sizeusing MS Power Point templates.Fig.4.Prototype value streaBeginning on the right on top of the map,the constructor places an order and the planning phase begins.According to the selected Configure-to-Order project handling,the drawings are distributed from the technical offic
收藏