大白菜收獲機機械部分設計—提升運輸機構的設計【含11張CAD圖紙】
大白菜收獲機機械部分設計—提升運輸機構的設計【含11張CAD圖紙】,含11張CAD圖紙,大白菜,收獲,機械,部分,設計,提升,運輸,機構,11,CAD,圖紙
大白菜收獲機的設計
摘 要
隨著新的農業(yè)生產模式和新技術的發(fā)展與應用,農業(yè)機器人將成為農業(yè)生產的主力軍。該文在分析大白菜收獲機工作特點的基礎上,從大白菜的采摘、轉運、打包等方面進行分析。其中主要對提升運輸部分做了詳細的設計說明。該大白菜收獲機適用于中小規(guī)模收割大白菜,結構簡單、制造成本低。
該大白菜收獲機的提升運輸部分采用帶式輸送,而張緊裝置作為帶式輸送機構中不可缺少的重要組成部分,對帶式輸送機的穩(wěn)定運行有著至關重要的作用。本文內容包括機架設計方案,平帶帶輪和平帶的選擇,軸的校核,以及張緊裝置的作用、類型,且設計了張緊裝置的總體方案,對其主要零部件的設計和選型進行了說明。所設計的張緊裝置使用螺桿作為張緊執(zhí)行元件,具有張緊力可調、結構簡單、適應性強、控制方便、安全性能好等特點。
關鍵詞:大白菜、收獲機、帶式提升輸送裝置、張緊裝置、螺桿
Designing Of Hoisting And Transporting Mechanism
For Cabbage Harvest Machinery
Abstract
Farm machinery is to become the capital ship of the agriculture.This paper introduced gathering ,transporting and packing cabbage,on the basis of the working peculiarity of the cabbage harvest machinery,and it mainly introduced its transporting mechanism. The cabbage harvest machinery is suitable to gather in the cabbage for family expenses.
The cabbage harvest machinery use belt conveyors as its transporting mechanism,while Tensioning device, as an important and indispensable component of the belt conveyor, has a vital role to the stable operation of the belt conveyor . This paper introduces the role of the tensioning device,type,installation layout principles, and its development profile.And then raised the tension of the belt conveyor to the tension and take-up device requirements, on the basis the analysis of the principle of the transmission belt conveyor. In this paper, the main device design programme of the automatically tensioning device have been introduced, and descripte its main components for the design and selection of the note.The tensioning device use the screwstaff as the take-up of the implementation component.,with adjustable tension, simple, strong adaptability and control convenience, performance and safety and so on.
Keywords:Cabbage harvest; machinery; Belt hoisting and transporting mechanism; tensioning;Screwstaff
目 錄
1 緒論 1
2 大白菜收獲機總體和主要部件簡介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2
2.1. 大白菜收獲機工作原理和結構簡介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2
2.2 收獲機提升運輸裝置簡介 2
2.3 其他裝置簡介................................................................................................................3
2.3.1 收獲機輸送部分簡介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3
2.3.2 鎖緊裝置簡介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4
3 提升運輸裝置主要零部件的設計 7
3.1 機架的設計 7
3.1.1 機架外形.......................................................................................................................7
3.1.2 計算部分.......................................................................................................................8
3.1.3 機架結構的確定.........................................................................................................8
3.2平帶帶輪的設計 9
3.3平帶的選擇 10
3.4平帶帶輪軸的設計 11
3.4.1 主動軸的設計 11
3.4.2 從動軸的設計 13
3.5 端蓋.....................................................................................................................14
3.6 支承軸的設計.....................................................................................................14
4 結論 15
4.1主要結論 16
4.2 問題與展望 16
5 設計心得 17
參考文獻 18
致謝 19
1 緒 論
果蔬收獲屬于一類勞動密集型工作,在很多國家,由于勞動力的高齡化,人力資源越來越缺乏,勞動力不僅成本高,而且還不容易得到,而人工收獲的成本在果蔬的整個生產成本中所占的比例高達33%~50%。因此實現(xiàn)果蔬收獲的機械化變得越來越迫切。
設計收獲機時,須考慮以下幾個問題:1)農民一般不具備太多的專業(yè)知識,因此收獲機必須結構簡單、操作性好、可靠性高、并且價格合理。2)由于大白菜葉球很脆嫩,在裝運過程中,很難避免外力的碰撞、擠壓而出現(xiàn)傷口。出現(xiàn)機械損傷不但影響商品價值,而且易腐爛變質。因此合理地設計收獲機的作業(yè)過程至關重要。
本設計通過對帶式提升輸送機起動張緊力和正常運行張緊力的計算,分析了帶式提升輸送機對張緊裝置的要求,比較了各種張緊裝置對帶式輸送機的影響,深入研究了張緊裝置的組成部分和其工作原理、工作環(huán)境、工況要求,并針對收獲機的輸送機構,設計了一種螺旋張緊裝置,即通過螺桿移動張緊滾筒實現(xiàn)張緊目的,實現(xiàn)了張緊力的調節(jié)。同時對提升運輸機構其他零部件的選擇也做了詳細的說明。
2 大白菜收獲機總體和主要部件簡介
2.1 大白菜收獲機工作原理和總體結構簡介
收獲機的工作過程為:扶莖器將大白菜扶正,切削刀將白菜切斷。然后提升機構將白菜運輸到輸送機構上,輸送機構再將大白菜運輸到裝箱裝置,最后把裝滿大白菜的箱子擺放在拖拉機后帶的車廂內。如圖1-1所示。
扶莖器主要將大白菜收攏扶正,由一些漸變傾斜桿組成;提升機構工作時與地面程傾角,平行的兩條平帶夾緊并將大白菜從地面提升到輸送帶上,提升機構位置的固定依靠鎖緊機構;輸送帶布置為水平,方便裝箱機構裝大白菜。
圖2-1
2.2 收獲機提升運輸裝置簡介
(1)、設計帶式提升運輸裝置,見圖3-2:
圖2-2
原始數據:提升帶速:1.5m/s
平帶帶輪直徑:280mm
工作條件:
連續(xù)單向運轉,工作時有輕微振動,使用期限為10年,小批量生產,單班制工作(8小時/天)。運輸速度允許誤差為。
(2)、 傳動方案:
外傳動為V帶傳動
提升運輸為平帶傳動
方案簡圖如圖2-3所示:
圖2-3
(3)、該方案的優(yōu)缺點:
該提升運輸機有輕微振動,由于V帶有緩沖吸振能力,采用V帶傳動能減小振動帶來的影響,并且該工作機屬于小功率、載荷變化不大,可以采用V帶這種簡單的結構,并且價格便宜,標準化程度高,大幅降低了成本。提升部分采用平帶傳動,這是運輸裝置中應用最廣泛的一種。V帶由拖拉機上柴油機引出的轉速帶動。
總體來講,該傳動方案滿足提升運輸裝置的性能要求,適應工作條件、工作可靠,此外還結構簡單、尺寸緊湊以及成本低。
2.3 其他裝置簡介
2.3.1收獲機輸送部分簡介
本設計選用簡單帶式輸送機為計算實例。該帶式輸送機構的結構特征和工作原理是:輸送帶既是承載貨物的構件,又是傳遞牽引力的牽引構件,依靠輸送帶與滾筒之間的摩擦力平穩(wěn)地進行驅動。 如圖2-4所示為收獲機帶式輸送機構簡圖,輸送帶繞過驅動滾筒和張緊滾筒。工作時,由內燃機通過帶輪裝置使驅動滾筒轉動,依靠驅動滾筒與輸送帶之間的摩擦力使輸送帶運動,貨物隨輸送帶運送到卸載點。 為了減輕對輸送帶的磨損、提高生產率和便于布置裝、卸載裝置,輸送帶的布置形式為水平輸送。
圖2-4
2.3.2 鎖緊機構簡介
由于大白菜收獲機的提升運輸機構是可以轉動的,它的兩個位置示意圖如圖2-5。其中工作位置1——實現(xiàn)大白菜的收獲的過程,它要求此時要對大白菜提升機構有良好的固定作用,不允許其有大的移動和振動,以保證大白菜能順利的往上提升達到所需的效果;工作位置2——大白菜收獲機在公路上行駛的時候,防止提升機構和切削機構與地面碰撞而發(fā)生不良影響兩個位置。這就要求一個機構能有效的實現(xiàn)這個過程,使它能夠安全和穩(wěn)定的完成上述要求。
圖2-5
為了固定工作位置1(也就是大白菜的收獲位置)時,此時要向右邊推動鎖緊機構將提升機構牢牢定在工作位置1,保證工作時的可靠性;當大白菜收獲機械處于公路行駛的階段時,就要求提升機構轉到位置2上,此時只要將鎖緊機構向左邊拉出,將提升機構轉到位置2,再將鎖緊機構向右邊推動將提升機構固定即可。
由上述分析可知:鎖緊機構必須可以左右來回運動,且它還要將位置1和位置2固定,這就要求鎖緊機構和提升機構能很好的貼合,而且接觸面要相對的大一些。且本機械為小型機械,它要求機械的結構簡單,盡量采用手動,而斜楔鎖緊裝置符合這些要求。它的結構如圖2-6所示:
斜塊在軌道中由人做推拉運動,就可以實現(xiàn)提升機構所需的位置要求,將鎖緊機構和提升機構的接觸部位做成斜面能很好的補充因裝配、制造而造成的誤差,從而能夠很好的貼合,增加了工作的穩(wěn)定性。
圖2-6
斜楔鎖緊機構雖然有很好的自鎖性,但是農業(yè)機械在工作的過程中的振動是比較大的,這樣是有可能因振動而使的自鎖機構松動,從而產生不良后果。為了保證大白菜收獲機在工作中的安全性,就要求斜楔機構能有很好的防松性能。這里在防松機構中利用彈簧的推力將小柱體貼緊斜體,使之不會退出來,達到防松的目的。
3 提升運輸裝置主要零部件的設計
3.1 機架的設計
3.1.1、機架外形
收獲機工作時,提升運輸機構與地面成30°角,要提升的高度大約為一米,所以提升運輸機構約兩米長,機架相應也要兩米長左右。考慮到長度較長,采用平帶運輸中間部分就可能由于平皮帶具有一定的彈性向內凹陷,從而導致中間部分在提升運輸過程中不能很好的夾緊大白菜,甚至出現(xiàn)提升運輸機構不能正常工作,所以在中間等距布置三個導輪,保證工作過程中對大白菜的良好夾緊提升運輸。如圖3-1所示:
圖3-1
3.1.2、計算部分
由于初定機架長兩米左右,所以單根平帶至少長四米,查機械設計手冊有平帶帶長4000mm,4500mm,5000mm。選定4500mm的平帶。
兩端的平帶帶輪直徑根據大白菜的直徑一般在250mm左右,查機械設計手冊確定平帶帶輪的直徑為280mm。所以:
208 + 2L = 4500 L = 1810 mm (L為機架長度)
見圖3-2:
圖3-2
3.1.3、機架結構的確定
機架的大致框架采用橫截面為矩形的結構鋼(見圖3-3)焊接在一起形成,底部由網狀連接以增強機架的剛性,頂部敞開,垂直安裝的平帶夾緊大白菜通過機架中間提升運輸到所需的高度,具體結構詳見裝配圖。
圖3-3
3.2 平帶帶輪的設計
(1)、尺寸和形狀的確定
根據大白菜的外形尺寸初定平帶帶輪的直徑為300mm,查機械設計手冊選定平帶帶輪的直徑為280mm,寬度為198mm, 為防止掉帶,通常在平帶帶輪輪緣表面制成中凸度,根據平帶帶輪的直徑查機械設計手冊得平帶帶輪的中凸度為0.8mm,輪輻形式為四孔板輻,四個孔的直徑為40mm,輪轂長為115mm,輪轂孔的直徑為32mm,輪轂內外圈之間壁厚為16mm,輪緣厚度為12mm,輪轂與輪輻以及輪輻與輪緣由1:25的錐度過度連接,輪緣邊上有高4mm的凸緣,防止平帶在垂直提升運輸工作過程中沿平帶帶輪軸線方向滑脫,詳見圖紙,示意圖如圖3-4所示:
圖3-4
3.3 平帶的選擇
平帶用來傳遞牽引力和夾緊大白菜,環(huán)繞安裝在軸線與鉛垂線成30°的帶輪上,要求強度高、耐磨耐用、伸長率小和便于安裝修理。帶式提升輸送機使用的輸送帶有橡膠帶、塑料帶、鋼帶、金屬網帶等,最常用的是橡膠帶。輸送帶的張力由帯芯膠布襯墊層承受,帶的強度決定于帶的寬度和帯芯襯墊層數。同時,為使平帶有足夠的橫向剛度,防止它在支撐帶輪之間向兩側過分塌陷。應根據帶寬選用一定的襯墊層數,查《運輸機械設計選用手冊》得襯墊層數Z=3,并按下式作輸送帶的強度驗算:
式中 :——分別為輸送帶實際傳遞的和允許傳遞的最大張力(N);
——輸送帶寬度,cm;
Z——襯墊層數;
——普通分層帆布帶的抗拉強度,N/層·cm;
n——安全系數,硫化接頭為8-10。
由于該收獲機提升運輸大白菜時,大白菜是立著被提升到一定高度的,大白菜的高度大約為350mm,而提升運輸大白菜的平帶只需夾緊大白菜的中間偏下部分,之前確定了平帶帶輪的寬度為198mm,而平帶的寬度系列有140mm,160mm,180mm,200mm,因此選用垂直提升運輸帶的寬度為180mm,襯層Z為3并采用硫化接頭,因為硫化接頭在平帶循環(huán)工作工程中不會因為接頭處而損傷大白菜。普通橡膠帶具有成槽性好,伸長率較小,對驅動滾筒的摩擦系數較大的優(yōu)點,強度和允許帶速適用于一般通用帶式輸送機,故選用常用的橡膠帶就能滿足要求。通過查相關資料選擇棉帆布芯輸送帶,型號為CC-56,扯斷強度為56N/(mm層)。每層厚度為1.5mm,每層重量為1.36kg/,參考力拉長率1.5%2%,上下覆蓋膠厚度各為1.5mm。
3.4平帶帶輪軸的設計
3.4.1 主動軸的設計
(1)、 選擇軸的材料及熱處理
由于平帶運輸裝置傳遞的功率不大,對其重量和尺寸也無特殊要求故選擇常用材料45鋼,調質處理.力學性能為:抗拉強度,彎曲疲勞極限,許用扭轉應力。
(2)、計算轉速
因平帶帶輪的直徑為280mm,查相關資料初定平帶的提升運輸速度為1.25m/s,則軸的轉速可根據一下公式計算得到:
r/min
所以取軸的轉速為90 r/min。
(3)、初選軸承
平帶帶輪和機架底部裝配選用接觸角為12°的圓錐滾子軸承(見圖3-5a),因底部安裝的軸承要承受平帶帶輪的重力以及其他工作部件的重力,其中主要是平帶帶輪的重量,力不是很大,查相關手冊得知接觸角為12°可以滿足工作要求;平帶帶輪和機架頂部裝配選用的軸承為深溝球軸承(見圖3-5b),因頂部的軸承只需承受軸的徑向力。
根據軸承確定各軸安裝軸承的直徑為:
圓錐滾子軸承和深溝球軸承的直徑都為30mm。查設計手冊得知:圓錐滾子軸承的標準號為:GB297-84,型號為:2007106E;深溝球軸承的標準號為:GB276-89,型號為:60106.
圖3-5a
圖3-5b
(4)、軸外形機尺寸的確定
軸直徑的確定
初估軸徑后,就可按軸上零件的安裝順序,從底端開始確定直徑.最底端軸段1安裝軸承2007106E,故該段直徑為30mm。中間軸段2安裝平帶帶輪,設計為32mm。與機架頂部裝配的軸段3安裝軸承60106,故該段直徑也為30mm。最上面留出一段直徑為28mm的軸段4裝V帶帶輪。。
各軸段長度的確定
軸段1的長度大致為軸承2007106E的寬度,取18mm長。軸段2為機架底部到頂端之間的距離,取210mm。軸段3的長度按軸承60106的寬度確定,取14mm。軸段4伸出機架安裝V帶帶輪,考慮到大白菜高約300mm,根部露出機架底面約30mm,夾在機架中間240mm,菜葉部分高出機架頂面約長30mm,所以把V帶輪設計安裝在高出機架頂面60mm的地方,故軸段4長100mm。V帶輪安裝在軸端一段直徑為20mm長19mm的軸段上,這段軸上還開有一6x16的鍵槽。軸端中心鉆有一M6x11深13mm的孔,用于安裝帶有M6螺紋的軸端擋圈,使V帶輪軸向定位。
軸上零件的周向及軸向固定
為了使安裝方便,平帶帶輪與軸選用間隙配合H6/g5。與軸承內圈配合軸徑選用r5,平帶帶輪與軸采用兩個A型普通平鍵聯(lián)接,為1045 GB1096。平帶帶輪的輪轂部分寬115mm,要固定在中空高度為210mm的機架的中間,在輪轂的每一端安裝兩個半圓形的擋圈,防止平帶帶輪的軸向竄動。
軸上倒角與圓角
為保證軸承內圈端面緊靠定位軸肩的端面,根據軸承手冊的推薦,取軸肩圓角半徑為0.5mm。。根據標準GB6403.4-1986,軸的左右端倒角均為145。
軸的結構圖見圖3-6:
圖3-6
3.4.2 從動軸的設計
從動軸在受力等各方面工作條件比主動軸要好,所以把從動軸設計為取主動軸的軸段1、2和3。主動軸能滿足工作要求,從動軸如此設計也能滿足工作要求。從動軸結構圖見圖3-7所示:
圖3-7
3.5 端蓋
平帶帶輪上的圓錐滾子軸承和深溝球軸承內圈可以靠軸肩和軸套定位,而外圈要用端蓋定位,示意圖如圖3-8所示:
圖3-8
端蓋圓周任一直徑上鉆有兩個6的光孔,軸承座上鉆有M6的螺紋,通過M6的螺栓把端蓋連接在軸承座上,端蓋下面部分套入軸孔接觸到軸承外圈,從而達到軸承的軸向定位。端蓋中間比兩邊要凹下一點是為了減少加工面的大小,改善零件的加工工藝性。
3.6 支承軸的設計
1):支承軸 在機架中間均布著三根支承軸,因為支承軸受力不大,選用16的軸,長320mm,直接設計成一根螺栓,頭部螺紋長50mm,詳見圖紙部分。
2):軸套 與支承軸間隙配合,保護套筒的內圈精度。因套筒的內圈加工較支承軸難,所示特在套筒和支承軸間加一軸套,內徑16mm,長200mm,壁厚2mm,軸套與套筒采取過盈配合,工作時,軸套和套筒一起繞支承軸轉動。
3):套筒 因支承軸較細,所以在支承軸外套一內徑20mm,長200mm,壁厚15mm的套筒,以增加平帶工作的穩(wěn)定性,裝配關系如上所述。
4):螺母和墊圈 選用標準的M16螺母和與M16螺母想配合的墊圈,因都已標準化,所以不詳述。
4 結論
4.1 主要結論
本課題在進行了大量調查和文獻檢索的基礎上,對大白菜收獲機帶式輸送機構以及其張緊系統(tǒng)進行了一定的理論分析,了解了目前國內帶輸送機張緊裝置現(xiàn)狀以及其使用情況,仔細分析了存在的問題,對該裝置各個部分的元件進行了選型、設計,并繪制了CAD圖紙。在總個設計中,得到了以下主要結論:
(1)在分析了帶式輸送機構的原理基礎上,結合本課題所研究的帶式輸送機構系統(tǒng),為帶式輸送機構的設計選型提供了依據,具有一定的參考意義。
(2)在分析研究現(xiàn)有螺旋張緊裝置使用情況的前提下,提出了螺旋張緊裝置的總體設計方案,該裝置可實現(xiàn)對輸送帶張力的調節(jié)。
4.2 問題與展望
本論文做的是一個研究性設計,研制開發(fā)新產品,雖然研制出一套螺旋張緊裝置系統(tǒng),所需的功能也能完成,但要做成一個產品還需繼續(xù)完善,許多工作有待于進一步改進。例如,由于試驗條件的限制,沒有對螺旋張緊的各個部分作計算機模擬仿真實驗,只停留在理論的基礎上。
張緊技術是帶式輸送機構的關鍵技術,它可以大大提高輸送機運行的可靠性。隨著農業(yè)收獲機向大型化和高速化方向發(fā)展,本設計為收獲機帶式輸送機構張緊技術的發(fā)展提供了一定的理論和實踐依據。
5 設計心得
畢業(yè)設計是四年學習當中一個重要環(huán)節(jié),通過了這個學期的畢業(yè)設計,使我從各個方面都受到了機械設計的訓練,對機械的有關各個零部件有機的結合在一起得到了深刻的認識。
由于在設計方面我們沒有經驗,在設計中難免會出現(xiàn)這樣那樣的問題,如:在選擇計算標準件是可能會出現(xiàn)誤差,如果是聯(lián)系緊密或者循序漸進的計算誤差會更大,在查表和計算上精度不夠準確.
在畢業(yè)設計的過程中,培養(yǎng)了我綜合應用機械設計課程及其他課程的理論知識和應用生產實際知識解決工程實際問題的能力,在設計的過程中還培養(yǎng)出了我們的團隊精神,大家共同解決了許多個人無法解決的問題,在這些過程中我們深刻地認識到了自己在知識的理解和接受應用方面的不足,在今后的學習過程中我們會更加努力和團結。
由于本次畢業(yè)設計是分部分完成的,自己獨立設計的東西不多,但在通過這次設計之后,我想會對以后自己獨立設計打下一個良好的基礎。
參考文獻
[1] 濮良貴,紀名剛。機械設計,第八版。北京:高等教育出版社,2006.
[2] 譚建榮,張樹有。圖學基礎教程。北京:高等教育出版社,2004.
[3] 劉鴻文。材料力學,第四版。北京:高等教育出版社,2004.
[4] 曾志新,呂明。機械制造技術基礎。武漢:武漢理工大學出版社,2001.
[5] 實用機械設計手冊 (上冊)。北京:機械工業(yè)出版社,1994.
[6] 運輸機械設計選用手冊 (上冊)。北京:化學工業(yè)出版社,2005.
致 謝
這次畢業(yè)設計是在肖麗萍老師的精心指導下完成的,在整個學習和做論文的過程中,肖老師對我們悉心指導和嚴格要求,為我們創(chuàng)造了良好的學習氛圍;她嚴謹的治學態(tài)度、高尚的敬業(yè)精神和淵博的學識,給我留下了深刻的印象,對我產生了巨大的影響,使我不僅掌握了更多的理論知識,而且在分析問題、解決問題的能力上有了很大的提高。
在此,我特向肖老師表示崇高的敬意和衷心的感謝!在整個論文期間,我還得到了許多同學的幫助,他們給了我很多建設性的建議,讓我受益非淺。特向他們表示誠摯的謝意!
最后,我要感謝大學的所有老師,是他們無私地教導我,使我掌握了機制專業(yè)的基礎知識,為這次的畢業(yè)設計和我以后的工作奠定了基礎。感謝他們多年的教育、關心、支持和鼓勵!謝謝!
李傳龍
2009年5月
翻譯部分
英文原文
Gear mechanisms
Gear mechanisms are used for transmitting motion and power from one shaft to another by means of the positive contact of successively engaging teeth. In about 2,600B.C., Chinese are known to have used a chariot incorporating a complex series of gears like those illustrated in Fig.2.7. Aristotle, in the fourth century B .C .wrote of gears as if they were commonplace. In the fifteenth century A.D., Leonardo da Vinci designed a multitude of devices incorporating many kinds of gears. In comparison with belt and chain drives ,gear drives are more compact ,can operate at high speeds, and can be used where precise timing is desired. The transmission efficiency of gears is as high as 98 percent. On the other hand, gears are usually more costly and require more attention to lubrication, cleanliness, shaft alignment, etc., and usually operate in a closed case with provision for proper lubrication.
Gear mechanisms can be divided into planar gear mechanisms and spatial gear mechanisms. Planar gear mechanisms are used to transmit motion and spatial gear mechanisms. Planar gear mechanisms are used to transmit motion and power between parallel shafts ,and spatial gear mechanisms between nonparallel shafts.
Types of gears
(1) Spur gears. The spur gear has a cylindrical pitch surface and has straight teeth parallel to its axis as shown in Fig. 2.8. They are used to transmit motion and power between parallel shafts. The tooth surfaces of spur gears contact on a straight line parallel to the axes of gears. This implies that tooth profiles go into and out of contact along the whole facewidth at the same time. This will therefore result in the sudden loading and sudden unloading on teeth as profiles go into and out of contact. As aresult, vibration and noise are produced.
(2) Helical gears. These gears have their tooth elements at an angle or helix to the axis of the gear(Fig.2.9). The tooth surfaces of two engaging helical gears inn planar gear mechanisms contact on a straight line inclined to the axes of the gears. The length of the contact line changes gradually from zero to maximum and then from maximum to zero. The loading and unloading of the teeth become gradual and smooth. Helical gears may be used to transmit motion and power between parallel shafts[Fig. 2.9(a)]or shafts at an angle to each other[Fig. 2.9(d)]. A herringbone gear [Fig. 2.9(c)] is equivalent to a right-hand and a left-hand helical gear placed side by side. Because of the angle of the tooth, helical gears create considerable side thrust on the shaft. A herringbone gear corrects this thrust by neutralizing it , allowing the use of a small thrust bearing instead of a large one and perhaps eliminating one altogether. Often a central groove is made around the gear for ease in machining.
(3) Bevel gars. The teeth of a bevel gear are distributed on the frustum of a cone. The corresponding pitch cylinder in cylindrical gears becomes pitch cone. The dimensions of teeth on different transverse planes are different. For convenience, parameters and dimensions at the large end are taken to be standard values. Bevel gears are used to connect shafts which are not parallel to each other. Usually the shafts are 90 deg. to each other, but may be more or less than 90 deg. The two mating gears may have the same number of teeth for the purpose of changing direction of motion only, or they may have a different number of teeth for the purpose of changing both speed and direction. The tooth elements may be straight or spiral, so that we have plain and spiral bevel gears. Hypoid comes from the word hyperboloid and indicates the surface on which the tooth face lies. Hypoid gears are similar to bevel gears, but the two shafts do not intersect. The teeth are curved, and because of the nonintersection of the shafts, bearings can be placed on each side of each gear. The principal use of thid type of gear is in automobile rear ends for the purpose of lowering the drive shaft, and thus the car floor.
(4) Worm and worm gears. Worm gear drives are used to transmit motion and ower between non-intersecting and non-parallel shafts, usually crossing at a right angle, especially where it is desired to obtain high gear reduction in a limited space. Worms are a kind of screw, usually right handed for convenience of cutting, or left handed it necessary. According to the enveloping type, worms can be divided into single and double enveloping. Worms are usually drivers to reduce the speed. If not self-locking, a worm gear can also be the driver in a so called back-driving mechanism to increase the speed. Two things characterize worm gearing (a) large velocity ratios, and (b) high sliding velocities. The latter means that heat generation and power transmission efficiency are of greater concern than with other types of gears.
(5) Racks. A rack is a gear with an infinite radius, or a gear with its perimeter stretched out into a straight line. It is used to change reciprocating motion to rotary motion or vice versa. A lathe rack and pinion is good example of this mechanism.
Geometry of gear tooth
The basic requirement of gear-tooth geometry is the provision of angular velocity rations that are exactly constant. Of course, manufacturing inaccuracies and tooth deflections well cause slight deviations in velocity ratio; but acceptable tooth profiles are based on theoretical curves that meet this criterion.
The action of a pair of gear teeth satisfying this requirement is termed conjugate gear-tooth action, and is illustrated in Fig. 2.12. The basic law of conjugate gear-tooth action states that as the gears rotate, the common normal to the surfaces at the point of contact must always intersect the line of centers at the same point P called the pitch point.
The law of conjugate gear-tooth can be satisfied by various tooth shapes, but the only one of current importance is the involute, or, more precisely, the involute of the circle. (Its last important competitor was the cycloidal shape, used in the gears of Model T Ford transmissions.) An involute (of the circle) is the curve generated by any point on a taut thread as it unwinds from a circle, called the base circle. The generation of two involutes is shown in Fig. 2.13. The dotted lines show how these could correspond to the outer portion of the right sides of adjacent gear teeth. Correspondingly, involutes generated by unwinding a thread wrapped counterclockwise around the base circle would for the outer portions of the left sides of the teeth. Note that at every point, the involute is perpendicular to the taut thread, since the involute is a circular arc with everincreasing radius, and a radius is always perpendicular to its circular arc. It is important to note that an involute can be developed as far as desired outside the base circle, but an involute cannot exist inside its base circle.
Let us now develop a mating pair of involute gear teeth in three steps: friction drive, belt drive, and finally, involute gear-tooth drive. Figure 2.14 shows two pitch circles. Imagine that they represent two cylinders pressed together. If slippage does not occur, rotation of one cylinder (pitch circle) will cause rotation of the other at an angular velocity ratio inversely proportional to their diameters. In any pair of mating gears, the smaller of the two is called the pinion and the larger one the gear. (The term “gear” is used in a general sense to indicate either of the members, and also in a specific sense to indicate the larger of the two.) Using subscripts p and g to denote pinion and gear, respectively.
In order to transmit more torque than is possible with friction drive alone, we now add a belt drive running between pulleys representing the base circles, as in Fig 2.15. If the pinion is turned counterclockwise a few degrees, the belt will cause the gear to rotate in accordance with correct velocity ratio. In gear parlance, angle Φ is called the pressure angle. From similar triangles, the base circles have the same ratio as the pitch; thus, the velocity ratio provided by the friction and belt drives are the same.
In Fig. 2.16 the belt is cut at point c, and the two ends are used to generate involute profiles de and fg for the pinion and gear, respectively. It should now be clear why Φ is called the pressure angle: neglecting sliding friction, the force of one involute tooth pushing against the other is always at an angle equal to the pressure angle. A comparison of Fig. 2.16 and Fig.2.12 shows that the involute profiles do indeed satisfy the fundamental law of conjugate gear-tooth action. Incidentally, the involute is the only geometric profile satisfying this law that maintains a constant pressure angle as the gears rotate. Note especially that conjugate involute action can take place only outside of both base circles.
Nomenclature of spur gear
The nomenclature of spur gear (Fig .2.17) is mostly applicable to all other type of gears.
The diameter of each of the original ro
收藏