油泵齒輪壓裝機設(shè)計【三維CATIA模型】【含11張CAD圖紙】
喜歡就充值下載吧,,資源目錄下展示的全都有,,下載后全都有,dwg格式的為CAD圖紙,有疑問咨詢QQ:414951605 或1304139763
CHANGCHUN INSTITUTE OF TECHNOLOGY
畢業(yè)設(shè)計任務(wù)書
論文題目:______油泵齒輪壓裝機設(shè)計 __
學(xué)生姓名: 黎航
學(xué)院名稱: 長春工程學(xué)院國際學(xué)院
專業(yè)名稱: 機械設(shè)計制造及其自動化
班級名稱: 機制1646
學(xué) 號: 1622421616
指導(dǎo)教師: 王利濤
教師職稱: 副教授
學(xué) 歷: 碩士
2020年3月1日
長春工程學(xué)院
畢業(yè)設(shè)計任務(wù)書
國際學(xué)院 學(xué)院 機制 專業(yè) 2020 屆
題 目
油泵齒輪壓裝機設(shè)計
專業(yè)班級
機制1646
學(xué)生姓名
黎航
指導(dǎo)老師
王利濤
任務(wù)書下發(fā)日期
2020-3-2
設(shè)計截止日期
2020-6-12
難度系數(shù)
較難
畢業(yè)設(shè)計(論文)的主要內(nèi)容:
本題目來源于吉林長久三美機械設(shè)備有限公司,機油泵齒輪壓裝機設(shè)計是應(yīng)用專業(yè)知識完成一臺壓裝設(shè)備設(shè)計,該設(shè)備用于機油泵裝配流水線上。通過該設(shè)計題目,使學(xué)生在設(shè)備總體方案設(shè)計、機械結(jié)構(gòu)設(shè)計、氣液動系統(tǒng)設(shè)計、電控系統(tǒng)設(shè)計以及零件強度計算、編寫技術(shù)文件、查閱文獻和設(shè)計軟件應(yīng)用能力方面受到一次綜合訓(xùn)練,鞏固和綜合運用所學(xué)知識,掌握正確設(shè)計思想與方法,培養(yǎng)學(xué)生的工程應(yīng)用能力。
機油泵齒輪壓裝機能完成機油泵主動齒輪與軸、從動齒輪與軸的壓裝工作,要求工件夾具使用方便可靠、壓裝位置準(zhǔn)確,壓裝力可檢測,工作臺高度位置可調(diào)以適應(yīng)不同型號機油泵齒輪軸總成壓裝,壓裝力可用電機或氣動實現(xiàn),工作過程有安全保護。
畢業(yè)設(shè)計(論文)的主要要求:
設(shè)計完成
(1)機油泵齒輪壓裝機總體方案設(shè)計;(2)機械總裝配設(shè)計、零件詳細結(jié)構(gòu)設(shè)計;(3)氣動或電動系統(tǒng)設(shè)計及計算;(4)控制部分選型及設(shè)計(選作)。
設(shè)計要求:
(1齒輪軸定位板應(yīng)滿足承受軸向力作用;(2)夾具定位精度≤0.01 mm ;(3)壓裝機立柱滑動部分直線行程誤差≤0.0lmm;(4)壓裝機重復(fù)壓裝精度≤0.0lmm;(5)壓裝機上壓板應(yīng)同步下壓;(6)保證操作工人的生命安全;
齒輪與軸的裝配工藝與技術(shù)要求文件見附件。
設(shè)備總裝配圖(計算機出圖);設(shè)備所有零件圖(計算機出圖);手繪圖A1張;設(shè)計圖紙數(shù)量不少于3張A0 圖紙;設(shè)計說明書1.5萬字;譯文與開題報告不少于3000字;
主要參考文獻:
[1]吳忠澤.機械設(shè)計.北京:高等教育出版社.2006.
[2]何忠保,陳曉華,王秀英.典型零件圖冊.北京:機械工業(yè)出版社.2000.
[3] 胡宗武《非標(biāo)準(zhǔn)機械設(shè)備設(shè)計手冊》機械工業(yè)出版社.北京: 2005.
[4]機械原理 蒲良貴.機械原理 .北京:高等教育出版社.2011.
任務(wù)書編制教師(簽章):
2020年 3 月1日
教研室審核意見:
教研室主任(簽章): 2020 年 3 月 1 日
學(xué)院審核意見:
學(xué)院院長(簽章): 年 月 日
備注
注:任務(wù)書中的數(shù)據(jù)、圖表及其他文字說明可作為附件附在任務(wù)書后面,并在主要要求中標(biāo)明:“見附件”
CHANGCHUN INSTITUTE OF TECHNOLOGY
開題報告
設(shè)計題目: 油泵齒輪壓裝機
學(xué)生姓名: 黎航
學(xué)院名稱: 國際教育學(xué)院
專業(yè)名稱: 機械設(shè)計制造及自動化
班級名稱: 機制1646
學(xué) 號: 1622421616
指導(dǎo)教師: 王利濤
教師職稱: 副教授
學(xué) 歷: 碩士
2020年 03 月 15 日
1、課題論證
1.1課題研究的目的與意義
由于我國工業(yè)基礎(chǔ)溥弱,油泵齒輪行業(yè)起步較慢,但其發(fā)展速度比較快。經(jīng)由二十余年消化吸收國外提高前輩技術(shù)以及自主立異。我國油泵齒輪設(shè)備制造行業(yè)有了奔騰發(fā)展。
油泵齒輪是依靠泵缸與嚙合齒輪間所形成的工作容積變化和移動來輸送液體或使之增壓的回轉(zhuǎn)泵。由兩個齒輪、泵體與前后蓋組成兩個封閉空間,當(dāng)齒輪轉(zhuǎn)動時,齒輪脫開側(cè)的空間的體積從小變大,形成真空,將液體吸入,齒輪嚙合側(cè)的空間的體積從大變小,而將液體擠入管路中去。吸入腔與排出腔是靠兩個齒輪的嚙合線來隔開的。油泵齒輪的排出口的壓力完全取決于泵出處阻力的大小。齒輪油泵由獨立的電機驅(qū)動,有效地阻斷上游的壓力脈動及流量波動。
在化工和石油部門的生產(chǎn)中,原料、半成品和成品大多是液體,而將原料制成半成品和成品,需要經(jīng)過復(fù)雜的工藝過程,泵在這些過程中起到了輸送液體和提供化學(xué)反應(yīng)的壓力流量的作用,此外,在很多裝置中還用泵來調(diào)節(jié)溫度。在船舶制造工業(yè)中,每艘遠洋輪上所用的泵一般在百臺以上,其類型也是各式各樣的。其它如城市的給排水、蒸汽機車的用水、機床中的潤滑和冷卻、紡織工業(yè)中輸送漂液和染料、造紙工業(yè)中輸送紙漿,以及食品工業(yè)中輸送牛奶和糖類食品等,都需要有大量的泵。?在農(nóng)業(yè)生產(chǎn)中,泵是主要的排灌機械。我國農(nóng)村幅原廣闊,每年農(nóng)村都需要大量的泵,一般來說農(nóng)用泵占泵總產(chǎn)量一半以上。在礦業(yè)和冶金工業(yè)中,泵也是使用最多的設(shè)備。礦井需要用泵排水,在選礦、冶煉和軋制過程中,需用泵來供水洗等。在電力部門,核電站需要核主泵、二級泵、三級泵、熱電廠需要大量的鍋爐給水泵、冷凝水泵、循環(huán)水泵和灰渣泵等。在國防建設(shè)中,飛機襟翼、尾舵和起落架的調(diào)節(jié)、軍艦和坦克炮塔的轉(zhuǎn)動、潛艇的沉浮等都需要用泵。高壓和有放射性的液體,有的還要求泵無任何泄漏等.??傊?無論是飛機、火箭、坦克、潛艇、還是鉆井、采礦、火車、船舶,或者是日常的生活,到處都需要用泵,到處都有泵在運行。正是這樣,所以把泵列為通用機械,它是機械工業(yè)中的一類重要產(chǎn)品。
而在泵在安裝過程中,我們要用到壓裝機,它也是泵在制造過程中不可或缺的一部分,而我此次的任務(wù)就是完成油泵齒輪壓裝機的設(shè)計,在任務(wù)開始之前,我們得先了解油泵齒輪壓裝機的設(shè)計原則:
1 工作可靠
可靠的操作意味著它通??梢栽谄鋲勖秶鷥?nèi)發(fā)揮其功能。每個部件必須具有裝置內(nèi)的某些功能,一些主要部件在裝置的正常操作中起決定性作用。機器零件的設(shè)計應(yīng)在機構(gòu)設(shè)計系統(tǒng)中進行需要通過科學(xué)設(shè)計來確保機器零件的可靠性。經(jīng)營者必須在勞動力范圍內(nèi),其作業(yè)如果沒有環(huán)境污染、小容量、安全性、便利的整備、環(huán)境的變化等,則必須簡單。
2 便于加工裝配
????機器零件縮短制造周期,提高企業(yè)響應(yīng)速度,提高企業(yè)競爭力,降低成本。
3 經(jīng)濟性好
?在滿足客戶要求的情況下盡量降低加工費用。
4 符合有關(guān)標(biāo)準(zhǔn)
????在設(shè)計過程中,我們必須遵守國家的法令,如標(biāo)準(zhǔn)、專利法、商標(biāo)法等,盡量提高產(chǎn)品質(zhì)量,合理簡化品種,縮短設(shè)計和制造周期,降低制造成本,保護環(huán)境。
1.2文獻綜述(相關(guān)課題國內(nèi)外研究的現(xiàn)狀)
目前,國內(nèi)一些主要汽車生產(chǎn)廠家使用的油泵齒輪壓裝機,在設(shè)備上還停留在五,六十年代的水平,結(jié)構(gòu)簡單,性能單一,生產(chǎn)效率低,設(shè)備完全靠人工控制,尺寸精度只能控制在2mm范圍內(nèi),控制系統(tǒng)落后,手動操作,人工檢測,不但人工勞動強度大,而且生產(chǎn)效率低。壓裝精度不高,如何保證油泵齒輪壓裝精度,這是目前國內(nèi)外的研究設(shè)計人員思考的問題。再有,其對不同型號的油泵齒輪壓裝時,需要人工手動更換底盤,生產(chǎn)效率低。這樣的壓裝延用了很多年,毫無大的改進,這種壓裝機的最大缺點是人工更換夾具,軸位差很難控制,更難滿足油泵齒輪的生產(chǎn)過程中的精度要求,且生產(chǎn)效率低,一次壓裝合格率低,壓裝的質(zhì)量受人為影響很大。鑒于以上各點,得出結(jié)論,此類型油泵齒輪壓裝設(shè)備已不能滿足生產(chǎn)人員對油泵齒輪壓裝的過程和結(jié)果的最基本要求,還待進行設(shè)備更新。
1.3課題研究的內(nèi)容、總體方案及技術(shù)路線、進度安排等
研究內(nèi)容:
通過本次設(shè)計題目,使學(xué)生在設(shè)備總體方案設(shè)計、機械結(jié)構(gòu)設(shè)計、氣液動系統(tǒng)設(shè)計、電控系統(tǒng)設(shè)計以及零件強度計算、編寫技術(shù)文件、查閱文獻和設(shè)計軟件應(yīng)用能力方面受到一次綜合訓(xùn)練,鞏固和綜合運用所學(xué)知識,掌握正確設(shè)計思想與方法,培養(yǎng)學(xué)生的工程應(yīng)用能力。
油泵齒輪壓裝機能完成主動齒和從動齒與軸的壓裝工作,以保證工作效率的提高。壓裝位置準(zhǔn)確,壓裝力可檢測,工作臺高度位置可調(diào)以適應(yīng)不同型號油泵齒輪壓裝,壓裝力可用電機或氣動實現(xiàn),工作過程有安全保護。
總體方案:
根據(jù)現(xiàn)在市場的情況,油泵齒輪壓裝機一般為立式壓裝結(jié)構(gòu),采用上壓下裝的設(shè)計方式,通過電機帶動壓缸向下運動進行壓裝,下部分則固定好被壓裝零件,從而完成壓裝工作。其中機械系統(tǒng)主要由壓裝裝置、工件的定位和夾緊裝置、等組成。在壓裝機升降部分采用導(dǎo)柱來進行升降,提升功能有兩個優(yōu)點。一是提高沖壓安裝效率。壓板安裝機不僅可以按壓油泵的齒輪組件,而且形狀很大,但也可以完成對具有低精度要求的若干工件的壓板安裝。壓入部件的尺寸通常非常小,匹配對環(huán)的高度也非常低,減少頭的移動的距離很長。位移提升單元可以適當(dāng)?shù)乜焖僬{(diào)整壓力頭,并且可以大大提高沖壓安裝效率。第二是克服沖床支架的缺點,降低壓床精度。油泵齒輪在工作臺面上利用定位夾爪來進行夾持,上方軸套通過定位后,由壓裝機頭透過導(dǎo)套來實現(xiàn)壓裝作業(yè)工作,側(cè)方傳感器來檢測壓裝工作的強度,完成壓裝過程。
技術(shù)路線:
1、滿足工作需求,穩(wěn)定性好結(jié)構(gòu)準(zhǔn)確性高。
2、操作調(diào)整方便,設(shè)計成本不易過高,外觀盡量美觀簡潔。
3、應(yīng)滿足承受軸向力作用,齒輪軸定位板。
4、夾具定位精度:≤0.01mm。
5、直線行程誤差≤0.01mm,壓裝機立柱滑動部分。
6、壓裝機重復(fù)壓裝精度:≤0.01mm。
7、壓裝機上壓板應(yīng)同步下壓。
8、保證操作工人的生命安全。
進度安排:
時間
設(shè)計任務(wù)及要求
第1周
去圖書館找相關(guān)的書籍并進行分析、查閱資料,熟悉設(shè)備技術(shù)要求、背景,學(xué)習(xí)與畢業(yè)設(shè)計相關(guān)知識,做好前期準(zhǔn)備工作。
第2周
上網(wǎng)搜索相關(guān)論文,報告,期刊等,做到熟悉自己設(shè)計的設(shè)備具體內(nèi)容,撰寫開題報告和外文翻譯,準(zhǔn)備開題報告答辯PPT。
第3周
進行總體方案設(shè)計,計算壓裝,傳動等壓裝機與有關(guān)各個方面的計算。
第4周
對壓裝機結(jié)構(gòu)進行設(shè)計,設(shè)計壓裝機整體結(jié)構(gòu)尺寸,計算并校核壓裝機的尺寸,保證并確定每個零件的尺寸大小。
第5周
開始進行外購件的選型廠家等。
第6周
先進行壓裝機機架部分的三維設(shè)計,并歸類好零件。
第7周
進行壓裝機壓裝部分的三維設(shè)計,并整理好零件。
第8周
進行壓裝機夾具部分的三維設(shè)計,并整理好零件歸類。
第9周
進行壓裝機升降部分的三維設(shè)計,并歸類零件。
第10周
將壓裝裝機各個部分進行裝配得到完整壓裝機三維結(jié)構(gòu),并得出工程圖交由老師審核,進行修改。
第11周
編寫設(shè)計說明書。
第12周
編寫設(shè)計說明書。
第13周
編寫設(shè)計說明書,交由老師審核并進行修改。
第14周
制作答辯提綱,設(shè)計定稿,打印,準(zhǔn)備畢業(yè)設(shè)計答辯。
第15周
進行畢業(yè)設(shè)計答辯。
1.4注意存在的問題
1. 首先要保證人工操作時的人身安全,保證工人的安全為首要注意問題,要保證工人在開啟機器,運行機器,關(guān)閉機器時,機器一直處于安全狀態(tài),要將人的安全放在首位。
2. 其次是非常重要的環(huán)保問題,設(shè)計時一定要注意符合綠色環(huán)保的標(biāo)準(zhǔn),盡量減少對大自然環(huán)境的污染。
3. 壓裝部分采用氣缸的結(jié)構(gòu),對結(jié)構(gòu)密封性,精度要求比較高,裝配過程也比較大,壓裝機結(jié)構(gòu)有待進一步改善。
4. 油泵齒輪與軸之間屬于過盈配合,靠手工難以裝配,即使借助于專用夾具也很難準(zhǔn)確、可靠的定位。
5.在整個壓裝過程中,很難保證零件已加工表面的質(zhì)量,這就保證不了產(chǎn)品的質(zhì)量。
1.5參考文獻
[1] 徐灝. 機械設(shè)計手冊[M] 第(三、四、五)冊.北京:機械工業(yè)出版
[2] 何忠保,陳曉華,王秀英.典型零件圖冊.北京:機械工業(yè)出版社, 2000 .
[3] 胡宗武《非標(biāo)準(zhǔn)機械設(shè)備設(shè)計手冊 》 機械工業(yè)出版社.北京: 2005 .
[4] 機械原理蒲良貴.機械原理.北京:高等教育出版社 2011 .
[5] 吳忠澤 機械設(shè)計 北京;高等教育出版社2006
徐灝. 機械設(shè)計手冊[M] 第(三、四、五)冊.北京:機械工業(yè)出版
2、答辯組論證結(jié)論
(1)方案可行,技術(shù)路線清晰 □ (2)方案可行,技術(shù)路線基本清晰 □
(3)方案基本可行,技術(shù)路線不很清晰 □ (4)方案和技術(shù)路線不很清晰 □
(5)方案和技術(shù)路線不清晰 □
3、指導(dǎo)教師意見: 教研室主任意見:
指導(dǎo)教師(簽名): 王利濤 教研室主任(簽名):
2020年 06 月 04 日 年 月 日
注:(1) 開題報告是用文字體現(xiàn)的設(shè)計(論文)總構(gòu)想,篇幅不必過大,但要把計劃設(shè)計的課題、如何設(shè)計、理論依據(jù)和研究現(xiàn)狀等主要問題說清楚;
(2) 字?jǐn)?shù)不少于3000字,參考文獻不少于6篇,印刷字符在10萬印刷符以上。
油泵齒輪壓裝機PROFESSIONAL POWERPOINT TEMPLATE姓名:黎航|導(dǎo)師:王利濤01|研究背景及意義02|論文綜述03|研究過程及方法CONTENTS目錄研究背景及意義Part 01研究背景及意義由于我國工業(yè)基礎(chǔ)溥弱,油泵齒輪行業(yè)起步較慢,但其發(fā)展速度比較快。經(jīng)由二十余年消化吸收國外提高前輩技術(shù)以及自主立異。我國油泵齒輪設(shè)備制造行業(yè)有了奔騰發(fā)展。油泵齒輪是依靠泵缸與嚙合齒輪間所形成的工作容積變化和移動來輸送液體或使之增壓的回轉(zhuǎn)泵。由兩個齒輪、泵體與前后蓋組成兩個封閉空間,當(dāng)齒輪轉(zhuǎn)動時,齒輪脫開側(cè)的空間的體積從小變大,形成真空,將液體吸入,齒輪嚙合側(cè)的空間的體積從大變小,而將液體擠入管路中去。吸入腔與排出腔是靠兩個齒輪的嚙合線來隔開的。油泵齒輪的排出口的壓力完全取決于泵出處阻力的大小。齒輪油泵由獨立的電機驅(qū)動,有效地阻斷上游的壓力脈動及流量波動。45%論文綜述Part 02論文綜述4目前,國內(nèi)一些主要汽車生產(chǎn)廠家使用的油泵齒輪壓裝機,在設(shè)備上還停留在五,六十年代的水平,結(jié)構(gòu)簡單,性能單一,生產(chǎn)效率低,設(shè)備完全靠人工控制,尺寸精度只能控制在2mm范圍內(nèi),控制系統(tǒng)落后,手動操作,人工檢測,不但人工勞動強度大,而且生產(chǎn)效率低。壓裝精度不高,如何保證油泵齒輪壓裝精度,這是目前國內(nèi)外的研究設(shè)計人員思考的問題。再有,其對不同型號的油泵齒輪壓裝時,需要人工手動更換底盤,生產(chǎn)效率低。這樣的壓裝延用了很多年,毫無大的改進,這種壓裝機的最大缺點是人工更換夾具,軸位差很難控制,更難滿足油泵齒輪的生產(chǎn)過程中的精度要求,且生產(chǎn)效率低,一次壓裝合格率低,壓裝的質(zhì)量受人為影響很大。鑒于以上各點,得出結(jié)論,此類型油泵齒輪壓裝設(shè)備已不能滿足生產(chǎn)人員對油泵齒輪壓裝的過程和結(jié)果的最基本要求,還待進行設(shè)備更新。2研究過程及方法Part 03研究內(nèi)容通過本次設(shè)計題目,使學(xué)生在設(shè)備總體方案設(shè)計、機械結(jié)構(gòu)設(shè)計、氣液動系統(tǒng)設(shè)計、電控系統(tǒng)設(shè)計以及零件強度計算、編寫技術(shù)文件、查閱文獻和設(shè)計軟件應(yīng)用能力方面受到一次綜合訓(xùn)練,鞏固和綜合運用所學(xué)知識,掌握正確設(shè)計思想與方法,培養(yǎng)學(xué)生的工程應(yīng)用能力。油泵齒輪壓裝機能一次性完成主動齒和從動齒與軸的壓裝工作,以保證工作效率的提高。壓裝位置準(zhǔn)確,壓裝力可檢測,工作臺高度位置可調(diào)以適應(yīng)不同型號油泵齒輪壓裝,壓裝力可用電機或氣動實現(xiàn),工作過程有安全保護??傮w發(fā)案Six StepsProcess根據(jù)現(xiàn)在市場的情況,油泵齒輪壓裝機一般為立式壓裝結(jié)構(gòu),采用上壓下裝的設(shè)計方式,通過電機帶動壓缸向下運動進行壓裝,下部分則固定好被壓裝零件,從而完成壓裝工作。其中機械系統(tǒng)主要由壓裝裝置、工件的定位和夾緊裝置、等組成。在壓裝機升降部分采用導(dǎo)柱來進行升降,提升功能有兩個優(yōu)點。一是提高沖壓安裝效率。壓板安裝機不僅可以按壓油泵的齒輪組件,而且形狀很大,但也可以完成對具有低精度要求的若干工件的壓板安裝。壓入部件的尺寸通常非常小,匹配對環(huán)的高度也非常低,減少頭的移動的距離很長。位移提升單元可以適當(dāng)?shù)乜焖僬{(diào)整壓力頭,并且可以大大提高沖壓安裝效率。第二是克服沖床支架的缺點,降低壓床精度。油泵齒輪在工作臺面上利用定位夾爪來進行夾持,上方軸套通過定位后,由壓裝機頭透過導(dǎo)套來實現(xiàn)壓裝作業(yè)工作,側(cè)方傳感器來檢測壓裝工作的強度,完成壓裝過程。技術(shù)路線1.滿足工作需求,穩(wěn)定性好結(jié)構(gòu)準(zhǔn)確性高。2.操作調(diào)整方便,設(shè)計成本不易過高,外觀盡量美觀簡潔。3.應(yīng)滿足承受軸向力作用,齒輪軸定位板。4.夾具定位精度:0.01mm。5.直線行程誤差0.01mm,壓裝機立柱滑動部分。6.壓裝機重復(fù)壓裝精度:0.01mm。7.壓裝機上壓板應(yīng)同步下壓。8.保證操作工人的生命安全。致謝語 大 義 之 方,論 萬 物 之 理 。受 益 終 身!T H A N K S長春工程學(xué)院
畢業(yè)設(shè)計(論文)開題報告審核表
指導(dǎo)教師姓名
王利濤
所在單位
國際教育學(xué)院
指導(dǎo)教師職稱
副教授
所學(xué)專業(yè)
機械設(shè)計制造及自動化
學(xué) 生 姓 名
黎航
班 級
機制1646
設(shè)計(論文)題目
油泵齒輪壓裝機
指導(dǎo)教師審查
意見
指導(dǎo)教師簽字:王利濤
2020 年 06 月 04 日
教研室審查意見
教研室主任簽字:
年 月 日
學(xué)院審查意見
院長簽字:
年 月 日
CHANGCHUN INSTITUTE OF TECHNOLOGY
油泵齒輪壓裝機設(shè)計
設(shè)計題目: 油泵齒輪壓裝機設(shè)計
學(xué)生姓名: 黎航
學(xué)院名稱: 國際教育學(xué)院
專業(yè)名稱: 機械設(shè)計制造及自動化
班級名稱: 機制1646
學(xué) 號: 1622421616
指導(dǎo)教師: 王利濤
教師職稱: 副教授
完成時間: 2019.03.04-2019.05.31
2019年5月31日
畢業(yè)設(shè)計(論文)
油泵齒輪壓裝機設(shè)計
Design of Press Mounting Machine for Oil Pump Gear
學(xué)生姓名: 黎航
學(xué)歷層次: 本 科
所在院系: 國際教育學(xué)院
所學(xué)專業(yè): 機械設(shè)計制造及自動化
指導(dǎo)教師: 王利濤
教師職稱: 副教授
完成時間: 2019.05.31
長 春 工 程 學(xué) 院
Liand Hao Chin. J. Mech. Eng. (2019) 32:54 https:/doi.org/10.1186/s10033-019-0369-zORIGINAL ARTICLEOn Generating Expected Kinetostatic Nonlinear Stiffness Characteristics bytheKinematic Limb-Singularity ofaCrank-Slider Linkage withSpringsBaokun Li1 and Guangbo Hao2*Abstract Being different from avoidance of singularity of closed-loop linkages, this paper employs the kinematic singularity to construct compliant mechanisms with expected nonlinear stiffness characteristics to enrich the methods of compli-ant mechanisms synthesis. The theory for generating kinetostatic nonlinear stiffness characteristic by the kinematic limb-singularity of a crank-slider linkage is developed. Based on the principle of virtual work, the kinetostatic model of the crank-linkage with springs is established. The influences of spring stiffness on the toque-position angle relation are analyzed. It indicates that corresponding spring stiffness may generate one of four types of nonlinear stiffness characteristics including the bi-stable, local negative-stiffness, zero-stiffness or positive-stiffness when the mechanism works around the kinematic limb-singularity position. Thus the compliant mechanism with an expected stiffness characteristic can be constructed by employing the pseudo rigid-body model of the mechanism whose joints or links are replaced by corresponding flexures. Finally, a tri-symmetrical constant-torque compliant mechanism is fabricated, where the curve of torque-position angle is obtained by an experimental testing. The measurement indicates that the compliant mechanism can generate a nearly constant-torque zone.Keywords: Kinematic singularity, Mechanism with springs, Kinetostatic model, Nonlinear stiffness The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:/creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.1 IntroductionA mechanism with springs is defined as a rigid-body linkage whose joints are placed springs. For this type of mechanisms, the kinetostatic driving force/torque of this type of mechanisms is nonlinear with respect to the position parameter. The nonlinear relation between the driving force/torque and the position parameter is called kinetostatic nonlinear stiffness characteristic. The mech-anism with springs possessing this characteristic can be applied in constant force mechanism 1, vibration isola-tor 2 and gravity balancer 3. The mechanism attached springs is often used in the type synthesis of compli-ant mechanisms based on the rigid-body replacement method and the compliant mechanisms analysis based on the pseudo-rigid-body model 46. Compliant mecha-nisms can be fabricated in monolithic and are applied in many applications needing high precision because of absence of backlash and friction 7, such as energy har-vester based on buckled beam 8, 9, micro-switch 10 and high accurate driver 11. However, the buckled beam only generates bi-stability but other nonlinear stiff-ness characteristics. Moreover, the mechanical model of bi-stable buckled beam is very complicated 12, 13. The four-bar linkage with placed springs can be used to design compliant mechanisms with bi-stable behavior by employing pseudo-rigid-body replacement 14, which develops the configuration of the bi-stable mechanism.When the rigid-body replacement method is use to synthesize compliant mechanisms processing corre-sponding performance, designers should grasp series of performances of the rigid-body linkage. Thus one should have much experience on linkage design and Open AccessChinese Journal of Mechanical Engineering*Correspondence: G.Haoucc.ie 2 School of Engineering, University College Cork, Cork T12K8AF, IrelandFull list of author information is available at the end of the articlePage 2 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 performance analysis. Therefore, it is meaningful that some common attributes are used to construct compliant mechanisms with nonlinear stiffness characteristic.Kinematic singularity which is a basic property of link-ages affects the performance of linkages seriously, so many scholars pay much attention on singularity distri-bution, singularity property identification and singular-ity avoidance 15, 16. However, kinematic singularity has two sides, and can be used to construct new types of devices. Kinematic singularity of the spatial parallel link-age whose links are connected by universal joints are used to construct several types of reconfigurable parallel mech-anisms 17. When parallel mechanisms work near the singularity, they are sensitive to external load. This prop-erty is applied to design the force sensors 18, 19. A new compliant mechanism with negative-stiffness characteris-tic is synthesized by using kinematic singularity of a four-bar linkage 20. The planar parallelogram linkage when the two cranks are collinear is used to construct a type of reconfigurable compliant gripper by applying rigid-body replacement method 21. A new medical device is designed by using the property that a parallel mechanism obtains an additional freedom when it is singular 22.In this paper, by the crank-slider mechanism with springs as an example, the kinematic limb-singularity which is a common property of rigid-body linkages, is used to con-struct the kinetostatic nonlinear stiffness characteristic. The rest of the paper is organized as follows: Section2 addresses the kinetostatic model of the mechanism and Section 3 classifies nonlinear stiffness characteristics as four types. Section4 analyzes the influences of spring stiff-ness on the nonlinear stiffness characteristics generated by the mechanism when moves from nonsingular position and passes the kinematic limb-singularity position. Sec-tion5 indicates that the mechanism only produces posi-tive-stiffness characteristic when moves from the kinematic limb-singularity position to nonsingular position. Section6 describes the approach by creating an expected zero-stiff-ness (constant-torque) characteristic of the mechanism working around the kinematic limb-singularity position. In Section7, design of a nonlinear compliant mechanism is further discussed and is validated by the experimental test-ing. Finally, Section8 draws some important conclusions.2 Kinetostatic Model oftheMechanismFigure 1 shows the schematic of the crank-slider mechanism with springs. Crank AB rotates about pin joint A in anticlockwise and drives the slider to moves along the horizontal line, where link AB and slider are connected by coupler BC. Three pin joints are placed torsional springs whose stiffness is KRA, KRB and KRC, respectively. Prismatic joint C is added extension spring whose stiffness is KPC.The Cartesian coordinates system, O-xyz, is attached on the base, where origin O is fixed on point A, the pos-itive direction of x-axis points to the horizontal right, the positive direction of y-axis is vertically up, and z-axis is determined by the right-hand rule.Vectors AB and BC are defined by r1 and r2, respec-tively. Projects of vector position C on the x-axis and y-axis with respect to the frame O-xyz are defined by r3 and e, respectively. Scalars r1 and r2 are lengths of links AB and BC, respectively. Scalars r3 and e are the coor-dinates of point C on the x-axis and y-axis, respectively. Link-length, r1 and r2, and offset, e, should satisfyso as to allow the mechanism to pass through the right limiting position, which is called the kinematic limb-sin-gularity and occurs when the crank and coupler are along the same line.Here we suppose that there is no friction and clear-ance between any two links connected by a kinematic pair. Moreover, we only discuss the kinetostatic model of the mechanism during the motion rather than con-sidering any inertial force/torque and gravity caused by links quality.The driving torque applied on link AB is set aswhere vector k is the unit vector of z-axis (vectors i and j are unit vectors of x-axis and y-axis, respectively). Torque vector Td is along the z-axis, scalar |Td| is the magni-tude of driving torque Td, where Td 0 indicates Td is along the positive direction of z-axis and Td 0 corre-sponds to direction of Td pointing to negative z-axis.The angular displacement of pin joint A iswhere A is the rotation angle of x-axis to link AB and indicates the input position angle of link AB, A0 cor-responds to the initial angle. In this paper, value of A allows no spring lose efficacy.Here we consider A as the general coordinate of the mechanism. Thus the virtual angular displacement of joint A is(1)(r1+ r2) e 0,Td= dU?dA=0,dTd?dA=d2U?d2A 0.(13a)A= arcsiner1 r2,(13b)A= arcsiner1+ r2.Td /Ua bcTmaxTminUmaxUmin2Td-AU-AUmin1Stable positionUnstable positionA0Stable positionFigure2 Torque/energy versus position anglesPage 5 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 Equation (7a) can lead to the following expressionEquation (14) indicates that when the mechanism locates at the two limiting positions represented by Equa-tions (13a) and (13b), the following expression is truewhich indicates that the ratio between the output velocity and the input velocity is zero and is called the kinematic limb-singularity 24.Figure3 shows the motion of the mechanism which works around the right limiting position which is also one of the two kinematic limb-singularity positions. The mechanism moves from the initial non-singular position with no deflected springs (Figure3(a), passes the kin-ematic limb-singularity position (Figure3(b) and then arrives at the end non-singular position (Figure 3(c). During the motion as Figure 3 shows, the potential energy of the spring placed at joint C increases from zero to the maximum and then falls to zero. Thus if the stiffness of the torsional springs are not too large, the potential energy of the mechanism may have one local maximum and two local minimums, which correspond to the unstable position (b as shown in Figure3) and two stable positions (a and c as Figure3 shows). This kine-tostatic nonlinear stiffness characteristic is called the bi-stable characteristic.(14)dr3?dA= r1sinA b?a.(15)dr3?dA= 0If and only if the pin joints are attached springs, the mechanism does not exhibit the phenomenon that the potential energy increases firstly and then decreases, which means that there is no maximal potential energy during the motion because the pint joints rotate in one direction during the motion. Thus, the mechanism only produces the positive-stiffness characteristic but does not generate the bi-stable characteristic.According to Eqs. (10) and (11), the driving torque is to resist the all of the force/torque caused by all of the springs and the total potential energy of the mecha-nism is the sum of the potential energy of each spring. In other words, the mechanism may produce four types of kinetostatic nonlinear stiffness characteristics which are determined by the stiffness of springs placed at the joints.Four nonlinear stiffness characteristics including bi-stable characteristics, local negative-stiffness char-acteristic, local zero-stiffness characteristic and posi-tive-stiffness characteristic are shown in Figure4, which describes the driving torque varies with the input posi-tion angle, A. Unlike a generic elastic spring or structure, the driving force/torque applied on the mechanism with springs does not obey the Hookes law. If the mechanism is carried out the motion as Figure3(a)3(c) shows, it may produce four types of nonlinear stiffness character-istics depicted by Figure4(a)(d), which are addressed as follows: (1) Figure 4(a) describes the bi-stable characteristic which includes three domains, where domains i and iii are positive-stiffness and domain ii is nega-tive-stiffness. As Tdmax Tdmin 0. Thus we can conclude that the mechanism is located at the local minimal energy point when A = A1 and A = A3, respectively. According to Ref.28, the mechanism is in equilibrium when A = A1 and A = A3 corresponding to a and c as Figure2 shows, respectively.Differentiating Eq. (16) with respect to A yieldsC1= 4r31cosA0sin3A0 10er21cosA0sin2A0+ 8e2r1cosA0sinA0 r31cosA0sinA0 3r1r22cosA0sinA0 2e3cosA0+ 2er21cosA0+ 2er22cosA0,C2= a0?4r21sin3A0 6er1sin2A0+ 2e2sinA03r21sinA0 r22sinA0+ 4er1?,C3= 4r31sin4A0+ 10er21sin3A0 8e2r1sin2A0+ 5r31sin2A0+ 3r1r22sin2A0+ 2e3sinA0 8er21sinA0 er22sinA0+ 4e2r1 r31 3r1r22,C4= a0?4r21sin2A0cosA0 6er1sinA0cosA0+2e2cosA0 3r21cosA0 r22cosA0?.(19)r1cosA+ a r1cosA0 a0= 0,(20)r1sinA b/a = 0.(21)dTddA=d2Ud2A= KPC(r1sinA b/a)2+ KPC(r1cosA+ a r1cosA0 a0)?r1cosA?r21sinAcosA+ er1sinA?ab2?a3?.If the mechanism is located at A = A2, which is the solution of Eq. (20), thenCombing Eqs. (5a), (22b) and (22c) obtainsAccording to Eqs. (21), (22a) and (22d), the following equation can be obtainedEquation (17) can lead toThus we can conclude that the mechanism is in unsta-ble equilibrium when located at A = A2 corresponding to b as shown in Figure2.When the geometry parameters are given as r1 = 10 cm, r2 = 50 cm and e = 3 cm, and the initial input position angle is set to A0 = 5, the driving torque and potential energy variations versus the input position angle is shown in Figure5. In this paper, the unit of translational spring and the torsional spring is N/cm and Ncm/(), respectively. It should be pointed out that the initial input position angle should satisfy(22a)(r3 r30)|A=A2= (r1cosA+ a r1cosA0 a0)|A=A2 0,(22b)?r21sinAcosA+ er1sinA?A=A2 0,(22c)cosA|A=A2 0.(22d)?r1cosA?r21sinAcosA+ er1sinA?ab2?a3?A=A2 0.(23a)dTddA?A=A2=d2Ud2A?A=A2 0.Page 8 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 so as to allow the mechanism to pass the right kinematic limb-singularity position with starting from a non-singu-lar position.Figure 5 indicates that when KRA = KRB = KRC = 0 and KPC 0, the kinematic limb-singularity position is in the unstable equilibrium point. Moreover, it can be shown that the increment of the translational spring stiffness increases both of the values of driving torque in positive direction and in negative direction. The potential energy is also increased by the increment of the translational spring stiffness.4.1.2 Nonlinear Stiffness Characteristics When KRB = KRC = 0, KPC = 0, andKRA 0Substitution of the springs stiffness into Eq. (10) obtains the driving torque asarcsiner1 r2 A0 0.(26)U =12KRA(A A0)2.(27)Td= KRB?A arcsinr1sinA er2+A0+ arcsinr1sinA0 er2?1 r1cosA?a?.(28)U =12KRB?A arcsinr1sinA er2+A0+ arcsinr1sinA0 er2?2.KKKKKKb Potential energy versus input position angleInput position angle ()Position angle / Input position angle A ()a Driving torque versus input position angleDriving torque Td (Ncm)Potential energy U (Ncm)Figure5 Bi-stable characteristic when KRA = KRB = KRC = 0 and KPC 0Page 9 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 4.1.4 Nonlinear Stiffness Characteristics When KRA = KRB = 0, KPC = 0, andKRC 0The driving force can be simplified asConsidering to Eq. (6), the physical meaning of Eq. (29) is that the driving torque is to resist the torque due to the torsional spring added at the pin joint C.Substitution the springs stiffness into Eq. (11) obtains the potential energy as follows(29)Td= KRC?arcsinr1sinA er2arcsinr1sinA0 er2? r1cosA?a.(30)U =12KRC?arcsinr1sinA er2arcsinr1sinA er2?2.When r1 = 10cm, r2 = 50cm, e = 3cm, and A0 = 5, Figure8 depicts the driving torque and potential energy represented by Eqs. (29) and (30), respectively.Figure 8 shows that the mechanism produces the positive-stiffness characteristic when the pin joint C is attached a torsional spring exclusively.In addition, when KRA = KRB = KRC, Figures6 through 8 indicates that the stiffness of the driving torque curve caused by KRB is the greatest, the stiffness due to KRA is the second largest and the stiffness due to KRC is the lowest.4.2 Influences ofSpring Stiffness ontheNonlinear Stiffness CharacteristicsSection4.1 illustrates that KPC makes the mechanism to generate the bi-stable characteristic including the nega-tive domain and KRA, KRB or KRC only allow the mecha-nism to exhibit the positive-stiffness characteristic. The total torque can be obtained by linear superposition of the torque due to KRA, KRB, KRC and KPC. Therefore, an expected nonlinear stiffness characteristic may be con-structed by designing different values of KRA, KRB, KRC and KPC on the condition of KPC 0.When r1 = 10cm, r2 = 50cm, e = 3cm, A0 = 5, and KPC = 1N/cm, the nonlinear stiffness characteristics of the mechanism for different values of KRA, KRB and KRC is described by Figure9, where KRA = KRB = KRA,B.Figure9 indicates that one nonlinear characteristic can transformed to another one when the torsional springs stiffness, KRA, KRB and KRC, are set to different values when the translational spring, KPC, is nonzero. For a given translational spring stiffness, when the torsional spring stiffness is small, the mechanism exhibits the bi-stable characteristic. Increment of torsional springs stiffness delays the unstable equilibrium position and advances the second stable point. The bi-stable characteristic may degenerate to the local negative-stiffness characteristic and even the positive-stiffness characteristic with large increment of torsional springs stiffness.In addition, existence of local maximum potential energy point is the precondition of the bi-stable char-acteristic. When the torque curve has local negative-stiffness domain but no maximum potential energy point, the mechanism does not exhibit the snap-through phenomenon.When r1 = 10cm, r2 = 50cm, e = 3cm, A0 = 5 and KPC = 1N/cm, Figure10 depicts the nonlinear stiffness characteristic of the mechanism when one torsional spring stiffness is zero exclusively.Figure10 shows that when KPC is given as a constant, KRB has the greatest effect, KRA has the second greatest effect, and KRC has the smallest effect on the nonlinear stiffness characteristic of the mechanism, respectively.Figure6 Stiffness characteristics for different values of KRA when KRB = KRC = 0, and KPC = 0Page 10 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 5 Nonlinear Stiffness Characteristic withInitial LimbSingularity PositionSection4 shows that the mechanism may generate the positive-stiffness when torsional spring stiffness is great enough. Section5 manly discusses another approach for producing the positive-stiffness characteristic by making the mechanism to move from the right kinematic limb-singularity position (Figure3(b) to the nonsingular posi-tion (Figure3(c).The torque versus position angle of the mechanism starting from the right limiting kinematic-singularity position can be derived by substitutinginto Eq. (10), and is not detailed here.Within this situation, as the translational spring placed at prismatic joint C moves in one-direction, the potential energy increases with the increment of the input rota-tion angle, and does not exist the local minimum except the initial position. Thus the bi-stable characteristic does A0= arcsiner1+ r2not exist caused by KPC. For the three torsional springs attached at the three pin joints, the potential energy only increase. Therefore, the total potential energy increases during the motion of the mechanism, and the mechanism only exhibits the positive-stiffness characteristic.When r1 = 10cm, r2 = 50cm, e = 3cm, the torque curve versus the position angle is described by Figure11.Figure 11 verifies that the torque curve exhibits the positive-stiffness characteristic caused each spring. Thus the total torque caused by all of the springs does exhibit the positive-stiffness.6 Expected Nonlinear Stiffness Characteristic CreationAccording to Sections4 and 5, the mechanism only gener-ates the positive-stiffness characteristic when the mecha-nism moves from the kinematic limb-singularity position with
收藏
鏈接地址:http://m.wymoca.com/article/29124670.html