《哈工大高等數(shù)學復習資料》由會員分享,可在線閱讀,更多相關(guān)《哈工大高等數(shù)學復習資料(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、哈爾濱工業(yè)大學遠程教育入學測試復習資料
專科起點本科——高等數(shù)學
報考工程管理、工程造價管理、會計學、工商管理、金融學、機械設計、電氣工程、土木工程、計算機
實際測試題型
一、 選擇題:共15個小題,每小題5分,共75分。
二、 計算題:共5小題,每小題15分,共75分。解答應寫推理、演算步驟。
復習資料
一、選擇題:
1. 設,則= ( A )
A. B.
C. D.
2. 設, 則= ( B )
A. 2005 B. 2005! C. 2004! D.2004
2、
3. 函數(shù)單調(diào)減少區(qū)間是 ( C )
A. B. C. D.
4. 若 則= ( D )
A. B.
C. D.
5.函數(shù)的遞減區(qū)間為 ( B ) .
A. B.
C. D.
6.設則時,= ( C )
A. B. C. D.
7.當時,下列函數(shù)中為無窮小量的是
3、 ( C )
A. B. C. D.
8.函數(shù)在點處連續(xù)是它在可微的( A )條件
A . B.
C. D.
9.設則=( B )
A. B.
C. D.
10.設,則= ( B )
A. B.
C. D.
11.當 時,函數(shù)的極
4、限是 ( D )
A . B. C. D.
12.設在處可導,且,則( B )
A. -1 B. 1 C. D.
13.設偶函數(shù)具有連續(xù)二階導數(shù),且,則______( B )
A. 不是的駐點 B. 一定是的極值點
C. 一定不是的極值點 D. 是否為極值點不能確定
14.若有連續(xù)的二階偏導數(shù),且,則( C )
A. B. C.
5、 D.
15.=( B )
A.0 B.1 C.3 D.不存在
16. 已知 ( A ) .
A. B. C. D.
17. 設 則 ( B ) .
A. 1 B. C. D. 2
18. 設二次可微, ,則( A )
A. 1 B. C. D. 2
19. ( D )
A. B.
6、 C. D.
20. 已知,,則 ( C )
A. 3 B. C. D. 2
21.函數(shù) ,則下列說法中正確的是 ( C )
A . B.
C. D.
22.設則( B )
A. B. C. D.
23.條件是的圖形在點處有拐點的__( D )___條件
A. 必要 B. 充分 C. 充分必要 D.以上均非
24
7、.設,則( A )
A. B.
C. D.
25.( B )
A. B.
C. D.
26.當,與等價的無窮小量是( C ).
A. B.
C. sin(sinx) D.1-cosx
27.若的一個原函數(shù)為,則( B )。
B
8、
28.條件是的圖形在點處有拐點的_(__ D __)條件
A. 必要 B. 充分 C. 充分必要 D.以上均非
29.若,則(?。隆。?
A. B. C. ?。模?
30.函數(shù)在上連續(xù),,,則在上必成立的是( D?。?
A. ?。拢?
C. D.(為某個常數(shù))
31. 設,則.( A )
A.1 B.0 C.3 D.9
32. 若,則.( C )
A. B. C. D.
33. 設均可
9、導,且導數(shù)恒相等,,則.( D )
A.1 B.0 C.-3 D.-2
34.若 則 ( B )
A. B. C. D.
35.,為常數(shù),則 ( D ) .
A.2 B. C. D.
36.在以下各式中,極限存在,但不能用洛必達法則計算的是(?。谩。?
A.?。拢。茫。模?
37.設函數(shù) ,則在處有( C )
A. 極限不存在 B.
10、極限存在但不連續(xù)
C. 連續(xù)但不可導 D. 可導
38.設偶函數(shù)具有連續(xù)二階導數(shù),且,則___( B )___
A. 不是的駐點 B. 一定是的極值點
C. 一定不是的極值點 D. 是否為極值點不能確定
39.設,則(?。谩。?
A. B. ?。茫 。模?
40.兩個無窮小比較的結(jié)果是(?。摹。?
A.同階 B.高階 ?。茫碗A ?。模淮_定
41.設在內(nèi)連續(xù),則在內(nèi)(?。摹。?
A.有界 ?。拢疅o界 C.存在最大值與最小值 ?。?/p>
11、.不一定有界
42.表示(?。隆。?
A. ?。拢畬Ш瘮?shù)在時的值
C.曲線在點的切線傾角 D.以上結(jié)論都不對
43.設,且當時,,則當時,有(?。隆。?
A. ?。拢 。茫。模陨隙疾粚?
44.( C )。
C
45. 則( D )。
D
46. 設的定義域是,則的取值是( B )
A. B. C. D.
47. 過曲線上點切線方程為,則( C ).
A. 4
12、 B. 1 C. 3 D. 2
48. 函數(shù)在上使拉格朗日中值定理成立 ( D )
A. 2 B. C. D.
49.( A )
A. B.
C. D.
50.極限 ( A )
A. 2 B. 3 C. -2 D. 4
51.變量在下列( D )過程中為無窮大量
A. B
13、. C. D.
52.若與均存在,則( C )
A. 必存在 B. 不存在 C. 不一定存在 D. 無法判斷
53.已知函數(shù)在任意點處的增量 ,且時,又,則 ( B )
A. B. C. D.
54.若有連續(xù)的二階偏導數(shù),且,則( D )
A. B. C. D.
55.=( D )
A.5 B.5! C.4 D.4!
56.設則( B
14、 )
A. B. C. D.
57.極限( A?。?
A. ?。拢 。茫 。模淮嬖冢皇?
58.設,則方程在區(qū)間內(nèi)恰有( ?。隆 。?
A.四個實根 ?。拢齻€實根 ?。茫€實根 ?。模粋€實根
59.,則( ?。摹 。?
A. ?。拢 。茫 。模?
60.函數(shù)連續(xù)是定積分存在的( A )條件
A.充分 B.必要 C.充要 D. 無關(guān)
二、計算題:解答應寫推理、演算步驟。
1.
解:
2.
解:原式=.
3.
解:原式
15、
4.
解:原式=.
5.平面圖形由和圍成,求:該圖形的面積和此圖形繞軸旋轉(zhuǎn)的體積。
解:交點為(1,3)和(3,1),
6.
解:
7.設 ,求
解: ,
.
8.
解:
9.
解:
10.
解:
11.
解:
12.
解:原式=.
13.
解:
14.計算由曲面圍成立體的體積。
解:
15.
解:
16.設,求常數(shù)與的值.
解:依題 ,必有,代入原式得:
,即 .
17.求曲線 在點處切線方程
解:,得 ,
所以, 切線方程為 ,即 .
18.
解:原式=
19.設平面區(qū)域D是由
解:
20.
解:
10 / 10文檔可自由編輯打印