1303-混凝土攪拌機JS2000
1303-混凝土攪拌機JS2000,混凝土攪拌機,js2000
JS2000C 型混凝土攪拌主機設計1JS2000 混凝土攪拌機設計摘 要:本次設計的 JS750 混凝土攪拌機是我們的主要設計機型。它是強制式臥軸混凝土攪拌機中的一種,強制式混凝土攪拌機不僅能攪拌干硬性混凝土,而且能攪拌輕骨料混凝土,能使混凝土達到強烈的攪拌作用,攪拌非常均勻,生產(chǎn)率高,質(zhì)量好,成本低。它是目前國內(nèi)較為新型的攪拌機,整機結(jié)構(gòu)緊湊、外型美觀。其主要組成結(jié)構(gòu)包括:攪拌裝置,攪拌傳動系統(tǒng),上料、卸料系統(tǒng),供水系統(tǒng),機架及行走系統(tǒng),電氣控制系統(tǒng),潤滑系統(tǒng)等。 主要設計計算內(nèi)容是 JS2000 混凝土攪拌機機架的設計,主要包括:整體結(jié)構(gòu)方案的確定、電動機的選擇和主要參數(shù)計算、皮帶輪設計、螺釘組聯(lián)接設計、聯(lián)軸器選型、攪拌軸的設計與校核、軸承的潤滑密封、潤滑系統(tǒng)的設計、JS2000 混凝土攪拌機的裝配圖及零部件圖的繪制。關(guān)鍵詞:混凝土攪拌機,皮帶輪,軸承。湖南科技大學大學本科畢業(yè)論文2Abstract:This design JS2000 concrete mixer is our main design model. It is forced horizontal-axis concrete mixer, forced one of concrete mixer can not only the mixing of dry, rigid concrete, and can stir light weight aggregate concrete, can make concrete achieve strong mixing effect, stirring very evenly, productivity is high, quality is good, the cost is low. It is the present domestic relatively new mixer, the machine has compact structure, good appearance. Its main composition structure including: agitator, stirring transmission system, loading, unloading system, water supply system, rack and mobile system, electric control system, lubrication system, etc. Main design calculation content is JS2000 concrete mixer frame design, mainly including: overall structure scheme determination, the choice and the main parameters of electric motor calculation, stirring shaft couplings selection, the design and check, the lubrication seal, lubrication system design, the JS2000 concrete mixer parts and assembly drawing. Keyword: Concrete mixer, pulley, bearingsJS2000C 型混凝土攪拌主機設計3第一章 概述本設計說明書詳細敘述了有關(guān)強制式混凝土攪拌主機的工作原理和結(jié)構(gòu)以及相關(guān)設計內(nèi)容,我的設計思路是根據(jù)擬訂的傳動路線,從電機的選擇、電機帶輪和減速器帶輪的設計、聯(lián)軸節(jié)和減速器以及聯(lián)軸器的選擇、攪拌軸的設計與計算并伴有軸承的選擇與校核計算、卸料門的設計以及潤滑系統(tǒng)的設計,最后還有主機的裝配工藝等內(nèi)容。本次設計我在老師和公司的綜合指導下和詳細查閱有關(guān)機械方面書籍來完成畢業(yè)設計的。以下從工作原理逐步展開:工作原理:主要由水平安置的兩個相連水平安置的圓槽形拌筒,兩根按相反方向轉(zhuǎn)動的攪拌軸和轉(zhuǎn)動機構(gòu)等組成,在兩根軸上安裝了幾組攪拌葉片,其前后上下都錯開一定的空間,從而使混合料在兩個攪拌桶內(nèi)輪番地得到攪拌,一方面將攪拌筒底部和中間的混合料向上翻轉(zhuǎn),另一方面又將混合料沿軸線分別向前后推壓,從而使混合料得到快速而均勻的攪拌,因此,該類攪拌機具有自落式和強制式兩種攪拌功能,攪拌效果好,耐磨性好,能耗低,宜制成大容量攪拌機。1.1 分類混凝土攪拌機是制備混凝土的專用機械,其種類很多。按混凝土攪拌機的工作性質(zhì)分有:周期性攪拌機和連續(xù)作用攪拌機兩大類;按混凝土的攪拌原理分有:自落式攪拌機和強制式攪拌機兩大類;按攪拌筒形狀分為:鼓筒式,錐式(含錐形及梨形)和圓周盤式等攪拌機,常用的是周期性攪拌機,其具體分類如下:1.2 型號混凝土攪拌機的型號由攪拌機機型號和主要參數(shù)組合而成,其意義如下:湖南科技大學大學本科畢業(yè)論文4例如:JS 2000C 型攪拌機1.3 攪拌主機結(jié)構(gòu)詳細說明混凝土攪拌機由攪拌機蓋、攪拌筒體、攪拌裝置、軸端密封、傳動裝置、襯板、卸料門潤滑系統(tǒng)。1.3.1.攪拌機蓋攪拌機蓋是為攪拌主機工作時防塵和進料連接而設計的,蓋與桶體間采用螺栓聯(lián)結(jié),中間有密封膠條,各進料口形狀和位置可接不同機型或用戶要求制作,檢視門有安全開關(guān)。攪拌機蓋設計的噴霧系統(tǒng)有效地壓住投料時揚起的粉塵并與吸塵裝置連在一起,確保環(huán)保要求。1.3.2.攪拌筒體攪拌筒體由優(yōu)質(zhì)鋼板整體彎成“奧米加 Ω”形狀,而且由特別管狀框架承托,有足夠的剛度和強度,保證主機的正常運作。1.3.3.攪拌裝置兩根攪拌軸上的多組攪拌臂和葉片組成攪拌裝置,保證桶體內(nèi)混合料℃能在最短時間內(nèi)作充分的縱向和橫向摻和,達到充分拌和的目的。攪拌臂分為進給臂、攪拌臂、返回臂,同時為了便于磨損后的調(diào)整和更換,每組攪拌葉片均能方便地在受力磨損的方向調(diào)整,直至攪拌葉片正常磨損后的更換。為適應不同工況和骨料粒徑的要求,攪拌臂可在軸上做 60o、120o 和180o 的排列,以達到攪拌最大骨料粒徑。葉片為高強度抗沖擊耐磨鑄鐵,正常生產(chǎn)時能達到 3700 罐/次,其性能指標符合 JG/T5045.1—93 規(guī)定(HRC≥58,沖擊值≥5.0N.M/mm 2,抗彎強度600N/mm2)。1.3.4.軸端密封對臥軸式混凝土攪拌機,因工作時主軸浸沒在摩擦力很強的砂石水泥材JS2000C 型混凝土攪拌主機設計5料中,如果沒有行之有效的軸端密封措施,主軸頸會很快被磨損,毀壞,產(chǎn)生嚴重的漏漿,影響級配。采用三道密封及骨料架油封和液壓系統(tǒng)供油旁泵,其工作原理用壓蓋1,耐磨橡膠圈 2 和轉(zhuǎn)轂 3 為第一道密封,為防止砂漿浸入縫隙,由注油孔向內(nèi)腔注入壓力油脂,至主縫中有少量油脂擠出為止,用油脂外溢來阻擋砂漿入侵,第二道密封由轉(zhuǎn)轂 3 轉(zhuǎn)轂 6 和 O 型密封圈組成即浮動環(huán)密封,浮動環(huán)組借助 O 型圈的彈性保持一定的壓緊力和磨損后的間隙補助,由注油孔注入潤滑油脂,轉(zhuǎn)轂為粉末冶金專用件,密封面經(jīng)研磨加工,最后由安裝的 J型骨架密封組成第三道。攪拌軸的支承由獨立的軸承座和帶錐套調(diào)心滾子軸承共同承擔,同時通過兩個骨架油封的作用能有效的保證軸承的良好工作環(huán)境,以保證機的正常運作。1.3.5.傳動裝置JS 型攪拌主機采用進口和國產(chǎn)兩種螺旋錐齒行星減速機傳動,減速機與攪拌主軸間采用鼓型齒聯(lián)軸器聯(lián)結(jié),攪拌主軸采用高速端十字軸萬向聯(lián)軸器同步,使兩軸作反向同步運轉(zhuǎn),達到強制攪拌效果,與傳統(tǒng)的大小的鏈輪傳動,大齒輪同步的結(jié)構(gòu)相比,具有結(jié)構(gòu)緊湊,傳動平穩(wěn),遇非正常過載時能通過皮帶打滑保護等特點。為保證減速機的正常工作,傳動裝置中可以選配冷卻裝置散熱器的功率為 0.055KW,由本機所附加的自動感溫器控制,在減速機油溫達到 60 度時自動啟動,油泵的動力由主電機通過皮帶傳動提供。1.3.6.襯板 弧襯板為高硌耐磨合金鑄鐵,其性能指標符合 JG/T5045.2—93 規(guī)定(HRC≥54,沖擊值≥7.0N.M/mm 2,抗彎強度≥600N/mm 2)特殊設計的菱形結(jié)構(gòu)能提高襯板的使用壽命,端襯板為優(yōu)質(zhì)高 Mn 耐磨鋼板制成.1.3.7.卸料門卸料門的結(jié)構(gòu)形式獨特可靠,整體弧面與桶內(nèi)襯板面持平,能有效地減少強烈沖擊,磨損真正做到優(yōu)質(zhì)耐久,另外,卸料門兩端的支承軸承座可上下調(diào)節(jié),接觸面磨損后可以調(diào)節(jié)間隙,確保卸料門的密封.卸料門采用進口液壓系統(tǒng)驅(qū)動,與傳統(tǒng)的氣動形式相比具有結(jié)構(gòu)緊湊,動作平穩(wěn),開門定位準確,能手動開關(guān)門等特點,油泵系統(tǒng)產(chǎn)生的高壓油通過控制系統(tǒng),經(jīng)高壓油管作用到油缸,驅(qū)動卸料門的開關(guān),通過調(diào)節(jié)卸料門軸端接近開關(guān)的位置和電控系統(tǒng)共同使用,可以實現(xiàn)卸料門的開門到位的任意調(diào)整,以實現(xiàn)不同的卸料速度. 1.4 攪拌主機類型選擇由于強制式混凝土攪拌機有立軸式和臥軸式兩大類。立軸式有分為渦漿式和行星式?;炷翑嚢铏C是將石子(粗骨料) 、沙子(細骨料) 、水泥、水和某種添加劑攪拌成勻質(zhì)混合料的機械。廣泛應用于工業(yè)和民用建筑、道路、湖南科技大學大學本科畢業(yè)論文6橋梁、港口和機場、礦山等建筑行業(yè)中。為適應攪拌不同性質(zhì)的混凝土的要求,以發(fā)展了很多機型,各種機型和性能各有其特點。從不同的角度進行劃分:按工作性質(zhì)分為周期式和連續(xù)式;按攪拌方式分為自落式和強制式;按裝置方式分為固定式和移動式;按出料方式分為傾翻式和非傾翻式;按攪拌桶外型分為犁式、錐式、鼓式、槽式、盤式。下面分自落式和強制式兩類來介紹和選擇。1.4.1.自落式混凝土攪拌機它靠旋轉(zhuǎn)著的鼓筒中的葉片將物料提高到一定高度后落下進行攪拌的最常用的的有 JG 型鼓筒式、JZ 式雙錐反出料式和 JF 型雙錐傾翻式混凝土攪拌機。1.4. 2.強制式混凝土攪拌機它靠旋轉(zhuǎn)的葉片對混合料產(chǎn)生剪切、擠壓、翻轉(zhuǎn)和拋出等多種作用的組合進行拌和的,攪拌作用強烈,攪拌時間短,適用于攪拌干硬性混凝土和輕骨料混凝土,由于葉片容易受磨損或被粗骨料卡住,故一般不易攪拌骨料顆粒教大的混凝土。1.4.3.二者的比較和選擇自落式最適宜拌制塑性和半塑性混凝土。強制式拌和時間短,生產(chǎn)率高,適宜于拌制干硬性混凝土。由于我公司生產(chǎn)的特點選擇強制式混凝土攪拌機。JS2000C 型混凝土攪拌主機設計7第二章 電動機選型和主要參數(shù)計算傳動路線:電機→電機帶輪→大帶輪→十字萬向聯(lián)軸節(jié)→減速機→聯(lián)軸器→攪拌軸,十字萬向聯(lián)軸節(jié)、減速機、聯(lián)軸器只進行選型不進行設計,現(xiàn)先進行電機設計:2.1.電機選型2.1.1.選擇電動機類型和結(jié)構(gòu)形式選我國推廣采用的 Y 系列的交流三相鼠籠式異步電動機,適用于不易燃,不易爆,無腐蝕性氣體的場合,具有較好的啟閉性能。結(jié)構(gòu)采用防護式。2.1.2.選擇電動機的容量標準電動機的容量由額定功率表示。所選電動機的額定功率應等于或稍大于工作要求的功率,電動機的容量主要由運行時的發(fā)熱條件限定,在不變或變化很小的載荷下長期連續(xù)運行的機械,只要其電動機的負載不超過額定值,電動機便不會過熱,通常不必校核發(fā)熱和啟動力矩所需電動機功率為Pd = PW /η (2—1)= 28.12/0.87=32.32KW式中 Pd—工作機實際需要的電動機輸出功率,KW;PW—工作機所需輸入功率,KW;η —電動機至工作機之間傳動裝置的總效率。工作機所需功率 PW應由機器工作阻力和運動參數(shù)計算求得,混凝土攪拌機的 PW計算如下:PW=T nw/9550η w (2—2)式中 T—工作機的阻力矩,N.m;nw 為—工作機的轉(zhuǎn)速, r/min; 給定 25r/minη w 為—工作機的效率。一般為 0.95其中總效率 η 計算如下: η=η 1η 2η 3……η n, 而 η 1 , η 2……η n分別為傳動裝置中每一傳動副(齒輪、渦桿、帶或鏈) 、每對軸承、每個聯(lián)軸器的效率,從[1]中表 1—7 選中間值如下:η 1=η 帶 =0.96, η 2=η 減 =0.94, η 3=η 聯(lián)軸器 =0.975, η 4=η 軸承 =0.99(一對)所以 η =η 1η 2η 3η 4 =0.96x0.94x0.975x0.99=0.872.1.3.雙臥軸強制攪拌機軸上功率的計算強制式混凝土攪拌機的功率計算目前還沒有一個嚴格的計算公式,這里推薦一種簡化的計算方法。對于一個臥式的強制式攪拌機,某一攪拌葉片的湖南科技大學大學本科畢業(yè)論文8受力和運動情況見圖 1,葉片的寬度為 bi,葉片與半徑的夾角為 α i,作用在dρ 面積上的力為dFi =kbi dρ式中 k 單位面積上的運動阻力,稱為阻力系數(shù),單位為 N/cm2.該阻力系數(shù)在葉片的轉(zhuǎn)速確定后取決于混凝土的水灰比,見表 1-1表 1-1 攪拌阻力系數(shù) k 的取值混凝料的性質(zhì) K 值(N/cm 2)干硬性混凝土 68~85塑性混凝土 25~35流動性小的砂漿 30~40流動性大的砂漿 10~20由所 dFi產(chǎn)生的阻力矩dMi = ρcosα i dFi這一葉片上的總阻力矩(2—??iiiirikbdpM?cos2112???3)式中 bi , r2和 r1均以 cm 為單位,則 Mi以 N.cm 為單位.考慮到所有葉片上的阻力矩,則攪拌機的功率(2—??ziinP19750?4)式中 η —機械的傳動效率z —攪拌葉片的數(shù)量n —攪拌葉片的轉(zhuǎn)速(r/min) 現(xiàn)取 k=80,取 bi=3.0cm,取 r2=67.3cm,r1= 54.5cm, α i =60o,一根軸JS2000C 型混凝土攪拌主機設計9上設計成 8 個攪拌軸,即 z=8,代入上面第一式得:Mi = 98542.4Nm代入上面第二式得: P=28.12 KW 2.1.4. 電動機的功率計算P’=K1*P (2—5)式中:K1——電動機容量儲備系數(shù),一般取 K1=1.1~1.25;P—攪拌機軸上功率,KW?,F(xiàn)取 K1=1.2 , P=30.25KW;代入的 P’=33.744KW ,故取 37kw 的電機2.1.5. 確定電動機的轉(zhuǎn)速對 Y 系列電動機,通常多選用同步轉(zhuǎn)速為 1500r/min 或 1000r/min 的電動機,現(xiàn)依據(jù)選定的類型結(jié)構(gòu)容量和轉(zhuǎn)速從從[1]中表 12—1~~12—11 查出電動機型號如下:Y225S—4 ,其額定功率為 37KW,滿載轉(zhuǎn)速為 1480r/min, 堵轉(zhuǎn)轉(zhuǎn)矩(額定轉(zhuǎn)矩)為 1.9Nm 最大轉(zhuǎn)矩為 2.2N.m,質(zhì)量為 284kg主要安裝尺寸: 電機軸徑為 60mm,長為 140mm, 軸上鍵寬為 18mm,鍵槽低部到軸另一素線為 53mm.2.2 重要參數(shù)的計算攪拌機是攪拌設備的核心組成部分,其結(jié)構(gòu)的好壞,會直接影響到混凝土攪拌的均勻性能和整套設備的生產(chǎn)率。其性能參數(shù)和結(jié)構(gòu)參數(shù)的設計計算和部分結(jié)構(gòu)的確定方法。2.2.1. 攪拌時間的確定根據(jù)每小時循環(huán)次數(shù) n、攪拌時間 s 及小時轉(zhuǎn)換到秒關(guān)系:s=(1/ n)*3600 (2—6)n—每小時循環(huán)次數(shù)。解: 攪拌時間 s=(1/50)*3600=72 秒〈=86 秒符合設計要求2.2.2.周期性混凝土攪拌機的生產(chǎn)率 Q 計算 生產(chǎn)率是攪拌設備的主參數(shù),也是確定其他技術(shù)參數(shù)的主要依據(jù)。生產(chǎn)率的確定一般應根據(jù)產(chǎn)品系列和配套需要合理的抉擇。為了滿足路面施工的配套要求,所設計的攪拌設備的最低生產(chǎn)率應不低于 60m3/h。經(jīng)驗公式如下:湖南科技大學大學本科畢業(yè)論文10(2—)/(6.3321hmttVQ??7)式中: V 攪拌筒的公稱容量,取 2000L;t1 為上料時間取 25s;t2 為攪拌時間取 72s;t3 為卸料時間取 8s;代入式中并單位換算得: )/(24609.33hmQ??2.2.3.攪拌機的容量攪拌機的容量是指周期式攪拌機設備每轉(zhuǎn)一次能生產(chǎn)新鮮混凝土的實方數(shù)——公稱容量。設計參數(shù)中給定 2000L2.2.4.強制式混凝土攪拌機轉(zhuǎn)速的校核合理確定強制式攪拌機的轉(zhuǎn)速,關(guān)系到攪拌混凝土的質(zhì)量和生產(chǎn)率,若轉(zhuǎn)速偏低,使攪拌時間增加,會降低生產(chǎn)率;若轉(zhuǎn)速過高,又會形成較大的離心力,促使混凝土產(chǎn)生離析現(xiàn)象,破壞均勻性,導致質(zhì)量降低。一般在設計中,除了要考慮物料在拌和中產(chǎn)生離心力外,還宜考慮被攪拌物料與攪拌葉片之間的摩擦系數(shù),推薦采用下式進行近似計算:(2—Rn54.23?8)式中 n—攪拌機主軸轉(zhuǎn)速,r/min;R—攪拌筒內(nèi)腔的半徑 m。計算得 r/min ,而給定的 25r/min 小于1.357.0/4.23??31.18r/min 滿足,故不會發(fā)生共振。2.2.5.攪拌筒的容積利用系數(shù)的確定容積利用系數(shù)是指出料容積和筒體幾何溶劑之比,它的確定主要以攪拌質(zhì)量的優(yōu)劣為依據(jù)。在確保攪拌質(zhì)量的前提下,容積利用系數(shù)越大越好。但是,容積利用系數(shù)的大小還受到其它的條件的制約,其一,攪拌機的設計需要考慮應具備 10%的超載能力;其二,按設計標準規(guī)定,出料體積與進料體積之比為 0.625,而幾何容積應大于進料體積,這樣容積系數(shù)最大不得超過0.58。一般雙臥軸攪拌機的容積利用系數(shù)取 0.32~0.35。2.2.6.攪拌筒長度 L 與直徑 D 之比 L/D 的確定JS2000C 型混凝土攪拌主機設計11在出料容積一定時,應考慮以最小的結(jié)構(gòu)尺寸獲得最大的空間容積。以利用收到節(jié)省制造材料材料、外性美觀和攪拌質(zhì)量好的綜合效益。因此長徑比 L/D 一般不宜過大,因物料的軸向運動主要靠葉片的螺旋角產(chǎn)生有限的軸向推力,如果物料的軸向流動距離過長,很難快速達到勻質(zhì)效果。通常長徑比宜控制在.3 以內(nèi),一般情況下取 L/D=1.05~1.15。2.3.計算總傳動比和分配各級傳動比2.3.1 傳動裝置的總傳動比為τ 總 =nm/nw=1480/25=59.2 (2—9)式中 nm—電動機滿載轉(zhuǎn)速 r/minnw—攪拌軸的轉(zhuǎn)速 r/min多級傳動中,總傳動比應為 τ 總 =τ 1τ 2……τn , 其中τ 1, τ 2, ……τ n為各級傳動機構(gòu)的傳動比。2.3.2 分配各級傳動參考[1]中表 1—8 的傳動比和[1]表 13—2,當選 V 帶傳動時,在滿足 2~4 范圍內(nèi),初選 τ 1=3.7,故減速器減速比τ 2=59.2/3.7=16滿足 8~40 范圍內(nèi)單級錐齒輪減速器.2.4 計算傳動裝置的轉(zhuǎn)速和動力參數(shù)設計計算傳動件時,需要知道各軸的轉(zhuǎn)速、轉(zhuǎn)矩或功率,因此應將工作機上的轉(zhuǎn)速轉(zhuǎn)矩或功率折算到各軸上,設從電機到工作機的各軸依次記為Ⅰ電,Ⅱ減,Ⅲ主軸,則2.4.1 各軸轉(zhuǎn)速n 電 =1480 (r/min)n 減 =nm/τ 1=1480/3.7=400 (r/min) (2—10)n 主 =400/16=25 (r/min)2.4.2. 各軸功率 Pd= 32.32 kwP 減 = Pd Xη 電減 (2—11)=32.32x0.96=31.03kwP 主 = Pd Xη 電減 Xη 主減= 31.03x0.94x0.975x0.99 =28.15 kw湖南科技大學大學本科畢業(yè)論文12式中 Pd —電動機輸出功率,KW;P 減 —減速器輸入功率,KW; P 主 —攪拌軸輸入功率,KW;η 電減 —電機與皮帶之間的傳動效率;η 減主 —減速箱與主軸之間的傳動效率.2.4.3. 各軸轉(zhuǎn)矩Td=9550Pd/nm=9550x32.32/1480 (2—12)=208.55(N.m);T 減 = TdXτ 1 Xη 電減 =208.55x3.7x0.96= 740.77 (N.m)T 主 = T 減 Xτ 2Xη 主減 = TdXτ 1Xτ 2X η 主減 xη 減xη 聯(lián)軸器 xη 軸承=208.55x3.7x0.96x16x0.94x0.975x0.99=8272.33 (N.m)式中 Td—電動機軸的輸出轉(zhuǎn)矩 Nm;T 減 —減速箱輸入轉(zhuǎn)矩 Nm;T 主 —攪拌主軸輸入轉(zhuǎn)矩 N.m.為簡明起見,現(xiàn)列表如下:轉(zhuǎn)速 (r/min)功率(KW) 轉(zhuǎn)矩(Nm)電機軸 1480 32.32 208.55減速箱軸 400 31.03 740.77攪拌軸 25 28.15 8272.33JS2000C 型混凝土攪拌主機設計13第三章 皮帶輪設計帶傳動具有結(jié)構(gòu)簡單、傳動平穩(wěn)、造價低廉以及緩沖吸振等特點,故我經(jīng)過比較采用帶傳動.帶傳動是由固聯(lián)于主動軸上的帶輪(主動輪)和固聯(lián)于從動軸上的帶輪(從動輪)和緊套在兩上的傳動帶組成的,當原動機驅(qū)動主動輪轉(zhuǎn)動時,由于帶和帶輪間的摩擦,便拖動從動輪一起轉(zhuǎn)動,并傳遞一定的動力.在一般機械傳動中,應用最廣的是 V 帶傳動,V 帶的橫截面呈等腰梯形,帶輪上也做出相應的輪槽,傳動時,V 帶只和輪槽的兩個側(cè)面接觸,即以兩側(cè)面為工作面。根據(jù)槽面摩擦原理,在同樣的張緊力下,V 帶傳動較平帶傳動能常產(chǎn)生更大的摩擦力,在加上 V 帶傳動允許的傳動比較廣,結(jié)構(gòu)較緊湊,及 V 帶是已標準化,故選 V 帶傳動。3.1 帶輪設計.3.1.1.計算功率 Pca由[2]中表 8—2 查得工作情況系數(shù) K A=1.0 ,(設其每天工作小時數(shù)為小于10h 和負載啟動故 Pca =K A P=1.0x37 =37KW (3—1)3.1.2.取窄 V 帶帶型根據(jù) Pca , n 電由 由[2]中圖 8—8 確定選用 SPB 型.3.1.3. 確定帶輪基準直徑由[2]中表 8—4 和表 8—8 取主動輪基準直徑 D1 =160mm ,根據(jù)[2]中式 8—15 ,從動輪基準直徑為湖南科技大學大學本科畢業(yè)論文14D2 =τ 1D1=3.7 x 160=592 ( mm) (3—2)根據(jù)[2]中表 8—8 取 D2=600 mm.按[2]中式 8—13 驗算帶的速度V=πD 1 n 電 /(60*1000)=3.14 x 160 x 1480/(60 x1000) =12.39 (m/s) <35 m(3—3)3.1.4. 確定窄 V 帶的基準長度和傳動中心距根據(jù) 0.7 ( D1+ D2 ) < a0 < 2 ( D1+ D2 ),初選中心距 a0 =800mm,根據(jù)[2]中式 8—20,計算帶所需的基準長度L1=2a0 + π( D1+ D2 )/2 + ( D2—D1)2/(4a0) (3—4)= 2 x 800+π(160+600)/2 + (600—160)2/(4x800)= 1600 + 1193.2 + 60.5= 2853.7mm 由[2]中表 8—3 選取的基準長度 Ld=2800 mm按[2]中式 8—21 計算實際中心距a= a0 + (Ld —L1)/2 (3—5)=800 –26.85=773 3.1.5. 驗算主動輪的包角 α 1由[2]中式 8—6 得α 1= 180o—( D2—D1) x 60o/a = 145.85o>120o (3—6)主動輪上的包角合適.3.1.6. 計算窄 V 帶的根數(shù) Z由[2]中式 8—22 知Z= Pca / [(P0+ΔP 0)Kα KL ] (3—7)式中 Kα —考慮包角不同時的影響系數(shù)即包角系數(shù);KL —考慮帶的長度不同時的影響系數(shù)即長度系數(shù); P0 —單根 V 帶的基本額定功率;ΔP 0 —計入傳動比的影響時,單根 V 帶額定功率的增量.由 n 電 =1480 (r/min) ,D1=160mm, τ 1 = 3.7 ,查表 8—6c 和表 8—6d的P0 = 6.89 KWΔP 0 =1.23 KWJS2000C 型混凝土攪拌主機設計15查表 8—9 得 由插入法(145.85-145)/(150-145.85)= (K-0.91)/(0.92- K α ) 得 Kα =0.912查表 8—10 得 KL= 0.96 則Z =37/[(6.89+1.23)x0.912x0.96] =5.2取整 Z= 5 根 3.1.7. 計算預緊力 F0由[2]中式 8—23 知F0 = 500{P ca[(2.5- K α )/ Kα ] }/VZ+ qv 2=500{40.4[(2.5- 0.912)/ 0.912] }/12.39x5 + 0.2x12.392 (3—8)=598.46 N由[2]中表 8—5,V 帶單位長度的質(zhì)量為 q=0.20kg/m.3.1.8. 計算作用在軸上的壓軸力 Q由【2】中式 8—24 得Q= 2Z F0 sin(α 1/2) (3—9)=2 X 5 X 598.46Sin(145.85o/2)=5984.6 X 0.9559=5720.68N3.2 結(jié)構(gòu)設計圖如下:電機帶輪材料選用鑄鐵 HT200結(jié)構(gòu)尺寸用腹板式(因為基準直徑小于 300mm 式采用腹板式) ,參看[2]圖 8—11,V 帶結(jié)構(gòu)設計部分和表 8—12 V 帶輪的輪槽尺寸,設計的其結(jié)構(gòu)如下: 3.2.1. 電機帶輪其中各參數(shù)為: d=60mm, e=19mm, z=5, f=12.5mm, B=(Z-1)e+2f=101mm,d1=1.8df=1.8x60=108mm,DW=160mm,bp=14.0mm,ha=4mm,hf=10mm,c’=B/4=101/4=25.25mm,D=DW -2ha=160mm,C=2mm,按設計參數(shù)繪制結(jié)果如下:而電機與帶輪連接采用鍵,鍵型號標記: 鍵 18 X 100 GB1096—79湖南科技大學大學本科畢業(yè)論文163.2.2. 減速機帶輪其輪槽尺寸與電機帶輪一樣,只是帶直徑,連接方式等不一樣而己,結(jié)構(gòu)設計如下:用十個 M12X40 螺釘和減速機連接如下:而其結(jié)構(gòu)尺寸示意如下:JS2000C 型混凝土攪拌主機設計17第四章 螺釘組聯(lián)接設計本小節(jié)進行的螺釘組聯(lián)結(jié)設計主要有 1). 兩根攪拌軸為保持同步而采用的十字萬向聯(lián)軸節(jié)上的螺釘校核. 2). 減速機上帶輪和減速機聯(lián)結(jié)用的螺釘設計與校核.設計螺釘組聯(lián)結(jié)時,首先要選定螺釘組的數(shù)目及布置方式;然后確定螺釘聯(lián)結(jié)的結(jié)構(gòu)尺寸。在確定螺釘尺寸時,對于不重要的螺釘聯(lián)結(jié),可以參考現(xiàn)有的機器設備,用類比法確定,不再進行強度校核。但對于重要的聯(lián)結(jié),應根據(jù)聯(lián)結(jié)的工作載荷,分析各螺釘?shù)氖芰顩r,找出受力最大的螺釘進行強度校核。4.1. 萬向聯(lián)軸節(jié)上的螺釘組設計4.1.1. 螺釘組結(jié)構(gòu)設計采用如圖 1 所示的結(jié)構(gòu),螺釘數(shù)為 Z1=4,圓周分布。圖 14.1.2. 螺釘受力分析螺釘只受扭矩 T 減 作用4.1.3. 確定螺釘直徑選擇螺釘材料為 Q235、性能等級為 6.8 的螺釘,由[2]中表 5-9 查的材料屈服極限 σs =480Mpa, 由[2]中表 5-11 查得安全系數(shù) Sτ =4, Sp=1.5 故螺釘材料的許用應力[ τ ]= σs/Sτ =480/4=120 Mpa., [ σ ]P=σs/Sp =480/1.5=320 Mpa..因只受扭矩 T 減 作用且用螺釘聯(lián)接,所以相當于鉸制孔用螺聯(lián)接一樣,故[2]中式 5-28 有受力最大的螺釘?shù)墓ぷ骷袅镕max= rmaxT 減 /∑r 2= 740.77/0.124=5973.95N (4—湖南科技大學大學本科畢業(yè)論文181)式中: rmax=31mm=0.031m, ∑r 2=4x0.0312m根據(jù)[2]中式.5-21 的擠壓強度條件σp =F/ d0Lmin ≤[ σ ] P (4—2)得 d0≥ F/[ σ ] PLmin =5973.95/(320x10 6x0.012)=1.57mm根據(jù)[2]中式.5-22 的剪切強度條件τ =F/(π/4d0 2)≤[ τ ] (4—3)得 d0≥ ??)/(4??F= 61024.3957??=7.96mm式中 F—螺釘所受的工作剪力,N;d0—螺釘剪切面的直徑(取為螺釘孔的直徑),mm;Lmin—螺釘桿與孔壁擠壓面的最小高度 mm,[ σ ] P 為螺釘或孔壁材料的許用擠壓應力,MPa.[ τ ]為—螺釘材料的許用切應力,MPa .所以按剪切強度條件設計來確定螺釘直徑,按粗牙普通螺紋標準(GB196-81) ,選用螺紋公稱直徑 d= 10 mm綜合上面計算并根據(jù)[1]中表 3-16 選用:螺釘 GB70-85 M10X254.2. 減速機上帶輪的螺釘組設計4.2.1. 螺釘組結(jié)構(gòu)設計采用如圖 2 所示的結(jié)構(gòu),螺釘數(shù)為 Z2=10,圓周分布。JS2000C 型混凝土攪拌主機設計19圖 24.2.2. 螺釘受力分析螺釘只受扭矩 T 減 作用4.2.3. 確定螺釘直徑選擇螺釘材料為 Q235、性能等級為 6.8 的螺釘,由[2]中表 5-9 查的材料屈服極限 σs =480Mpa, 由[2]中表 5-11 查得安全系數(shù) Sτ =4, Sp=1.5 故螺釘材料的許用應力[ τ ]= σs/Sτ =480/4=120 Mpa., [ σ ]P=σs/Sp =480/1.5=320 Mpa..因只受扭矩 T 減 作用且用螺釘聯(lián)接,所以相當于鉸制孔用螺聯(lián)接一樣,故[2]中式 5-28 有受力最大的螺釘?shù)墓ぷ骷袅镕max= rmaxT 減 /∑ r2= 8272.33/0.45=18382.96N式中: rmax=45mm=0.045m, ∑ r2=10x0.0452根據(jù)[2]中式.5-21 的擠壓強度條件σp =F/ d0Lmin ≤[ σ ] P得 d0≥ F/[ σ ] PLmi=18382.96/(320x10 6x0.022)=2.61mm式中: Lmin=22mm=0.022m根據(jù)[2]中式.5-22 的剪切強度條件τ =F/(π/4d0 2)≤[ τ ]得 d0≥ ??)/(4??F= 61024.3/9618??=13.97mm式中: F—螺釘所受的工作剪力,N;d0—螺釘剪切面的直徑(取為螺釘孔的直徑),mm;湖南科技大學大學本科畢業(yè)論文20Lmin—螺釘桿與孔壁擠壓面的最小高度 mm;[ σ ] P 為—螺釘或孔壁材料的許用擠壓應力,MPa.[ τ ]為—螺釘材料的許用切應力,MPa .所以按剪切強度條件設計來確定螺釘直徑,按粗牙普通螺紋標準(GB196-81) ,選用螺紋公稱直徑 d=16 mm其標記為:螺釘 GB70-85 M16X40第 五 章 聯(lián)軸節(jié)與減速機選型聯(lián)軸節(jié)的選用: 根據(jù)攪拌機工作需要,要保持兩根攪拌主軸同步,選用十字萬向聯(lián)軸節(jié);減速機的選用: 根據(jù)減速比和轉(zhuǎn)矩要求,選用 311R3 的鼓形齒聯(lián)軸器連接,其減速比 τ =16.JS2000C 型混凝土攪拌主機設計21第 六 章 聯(lián)軸器選型和攪拌軸的設計與校核6.1 軸的相關(guān)設計內(nèi)容軸是組成機器的主要零件之一,一切作回轉(zhuǎn)運動的傳動零件(例如齒輪、蝸輪等) ,都必須安裝在軸上才能進行運動及動力的傳遞。因此軸的主要功能是支承回轉(zhuǎn)零件及傳遞運動及動力。軸按照承受載荷的不同,可分為轉(zhuǎn)軸、心軸和傳動軸三類。工作中既承受彎矩又承受扭矩的軸稱為轉(zhuǎn)軸,只承受彎矩而不承受扭矩的軸稱為心軸,心軸又分為轉(zhuǎn)動心軸和固定心軸兩種。只承受扭矩而不承受彎矩的軸稱為傳動軸。軸按軸線形狀的不同,可分為曲軸和直軸兩大類。曲軸通過連桿可以將旋轉(zhuǎn)運動改變?yōu)橥鶑椭本€運動,或作相反的運動變換。直軸根據(jù)外形的不同,可分為光軸和階梯軸兩種。光軸形狀簡單,加工容易,應力集中源少,但軸上的零件不容易裝配及定位;階梯軸則正好與光軸相反。因此光軸主要用于心軸和傳動軸,階梯軸則常用于轉(zhuǎn)軸。直軸可做成實心或空心,在那些由于機器結(jié)構(gòu)的要求而需在軸中裝設其他零件或者減小軸的質(zhì)量具有特別重大做用的場合,軸可作成空心??招妮S內(nèi)徑與外徑的比值通常為 0.5~0.6,以保證軸的剛度和扭轉(zhuǎn)穩(wěn)定性.此外,還有一種鋼絲軟軸又稱鋼絲撓性軸,它是由多組鋼絲分層卷成的,具有良好的撓性,可以把回轉(zhuǎn)運動靈活地傳到不開敞的空間位置。 軸的設計包括軸的結(jié)構(gòu)設計和工作能力設計。1) 軸的結(jié)構(gòu)設計是根據(jù)軸上零件的安裝定位以及軸的制造工藝等方面的湖南科技大學大學本科畢業(yè)論文22要求,合理地確定軸的結(jié)構(gòu)形式和尺寸。軸的結(jié)構(gòu)設計不合理,會影響軸的工作能力和軸上零件的工作可靠性,還會增加軸的制造成本和軸上零件裝配的困難等,因此,軸的結(jié)構(gòu)設計是軸設計的重要內(nèi)容。2). 軸的工作能力計算是指軸的強度剛度和穩(wěn)定性等方面的計算.多數(shù)情況下,軸的工作能力主要取決于軸的強度.這時對軸進行強度計算,以防止軸的斷裂或塑性變形。而對剛度要求高的軸(如車床主軸)和受力大的細長軸,還應進行剛度計算,以防止工作時產(chǎn)生過大的彈性變形,對于高速運轉(zhuǎn)的軸,還應進行振動穩(wěn)定性計算,以防止發(fā)生共振而破壞。 6.2 軸設計:6.2.1 初步確定軸的最小直徑先按[2]中式 15-2 初步估計軸的最小直徑。選取軸的材料為 45 號鋼,調(diào)質(zhì)處根據(jù)[2]中表 15-3,取 A0=108,于是有dmin= 3主主nP(6—1)= =117.65mm325.108?又因為對于軸徑大于 100mm 的軸,有兩個鍵槽時,軸徑應增大 7%,故dmin=117.65x(1+7%)=125.89mm,輸入軸的最小直徑要取決于安裝聯(lián)軸器處軸的直徑 dⅠ-Ⅱ ,為了使所選的軸直徑 dⅠ-Ⅱ 與聯(lián)軸器的孔徑相適應,故需同時選取聯(lián)軸器的型號。6.2.2 聯(lián)軸器的計算轉(zhuǎn)矩 TcaTca=KAT 主 (6—2)式中: KA可查[2]中表 14-1,考慮到轉(zhuǎn)矩變化中等,故取 KA=1.7, 則Tca=KA 主 =1.7x8272.33=14062.96N.M按照計算轉(zhuǎn)矩 Tca應小聯(lián)軸公稱轉(zhuǎn)矩的條件,查標準 GB5014-85 或機械設計手冊第三版第二卷表 6-2-29,選用 GⅡ CL10型鼓形齒式聯(lián)軸器(JB/ZQ4379-86) ,其公稱轉(zhuǎn)矩為 2000N.M, 半聯(lián)軸器Ⅰ的孔徑 dⅠ =130mm,故取 dⅠ-Ⅱ = 130mm,半聯(lián)軸器長度 L=128mm,其標記示例:G Ⅱ CL10型鼓形齒式聯(lián)軸器:主動端:Y 型軸孔,A 型鍵槽 , dⅠ =130mm, L=128mm 6.2.3 裝配方案比較與設計.軸上零件的裝配方案對軸的結(jié)構(gòu)形式起著決定性的作用,所謂裝配方案,就是預定出軸上主要零件的裝配方向,順序和相互關(guān)系.JS2000C 型混凝土攪拌主機設計23圖一 圖二從以上攪拌軸的兩種裝配方案比較中,圖一比圖二多了緊定螺釘,它可使套筒隨軸一起旋轉(zhuǎn),當由于摩擦損害軸徑時,便于替換,這樣就沒有必要換整根軸,節(jié)省了材料和成本,所以決定采用第一種方案。 6.3 根據(jù)軸向定位的要求確定各段軸徑和長度.6.3.1 Ⅱ-Ⅲ段長度和直徑的確定為了滿足半聯(lián)軸器的軸向定位要求,Ⅰ-Ⅱ段右端需制出一軸肩,故取Ⅱ-Ⅲ的直徑 dⅡ-Ⅲ =140mm ;左端用減速器的輸出軸端定位, 半聯(lián)軸器與軸的配合長度 L1=128mm,為了不與悶蓋接觸 ,故可取lⅠ-Ⅱ =126mm.6.3.2 初步選擇滾動軸承a. 從負荷大小和方向考慮, 既受到徑向又有軸向還存在軸或殼體變形較大以及安裝對中性差的情況且要求具有調(diào)心功能,故選用調(diào)心軸承.b. 從軸承的剛性考慮,一般滾子軸承大于球軸承, 故選用滾子軸承.c. 從軸向游動考慮,一是可選用內(nèi)或外圈無擋邊的軸承,二是在內(nèi)圈與軸或外圈與軸座孔之間用間隙配合.d. 從安裝與拆卸角度考慮,裝卸頻繁時,可選用分離型軸承或選用內(nèi)圈為圓錐孔的、帶緊定套或退卸套的調(diào)心軸承.綜上,采用裝在緊定套上的調(diào)心滾子軸承.參照工作要求并根據(jù) dⅠ-Ⅱ = 130mm,由軸承產(chǎn)品目錄中初步選取 0 基本湖南科技大學大學本科畢業(yè)論文24游隙組,標準精度等級的調(diào)心滾子軸承,從[3]中表 7-2-69 中找到裝在緊定套上的調(diào)心滾子軸承.,其型號為 3013728,尺寸為 d x D x B=140x270x86,基本額定負荷 Cr=1530kN Cor=1854KN,計算系數(shù)為 e=0.34,Y1= 2.0 Y2=2.9 Y0=2.0 故 dⅡ-Ⅲ =140mm,相應地查的緊定套長度 B1=119mm,考慮到拆卸軸承和安裝軸上零件的方便性及參考經(jīng)驗尺寸,取 lⅡ-Ⅲ =217mm.(3). 根據(jù)軸間的高度要求單邊軸肩取 5mm 故取 dⅢ-Ⅳ =150, 為滿足安裝軸端密封的長度要求和參考滑轂等零件長度尺寸,取lⅢ-Ⅳ =198mm.(4). 安裝攪拌臂的軸徑暫取 dⅣ-Ⅴ =180mm,其長度 lⅣ-Ⅴ =8x195=1560mm,由于安裝和制造的誤差,故取 lⅣ-Ⅴ =1582mm.(5). 由安裝零件對稱性,故尺寸設計可用對稱法取 dⅤ-Ⅵ =150mm, lⅤ-Ⅵ =198mm,dⅥ-Ⅶ =140mm, lⅥ-Ⅶ =120mm.6.4 確定軸上圓角和倒角尺寸參考[2]中表 15-2,取軸端倒角為 3 x 45°,各軸肩處的圓半徑見圖. 6.5 求軸上載荷按彎扭合成強度條件計算,通過軸的結(jié)構(gòu)設計,軸的主要結(jié)構(gòu)尺寸,軸上零件的位置,以及外載荷和支反力的作用位置均已確定。軸上載荷(彎矩和扭矩)已可以求得,因而可按彎扭合成強度條件對軸進行強度校核計算。6.5.1 作出軸的計算簡圖(即力學模型)根據(jù)軸的結(jié)構(gòu)圖作出軸的計算簡圖如下:在作計算簡圖時,應先求出軸上受力零件的載荷,并將其分解為水平分力和垂直分力,然后求出各支承處的水平反力和垂直反力。 JS2000C 型混凝土攪拌主機設計25根據(jù)總計算簡圖,作出 XOY 面上的受力圖如下:6.5.2 求出水平面(XOY 面)上各力由扭矩平衡得,且由分析的 Fx1 = Fx3 = Fx5 = Fx7, 有Fx1 x 0.575 x 4 = T =8272.33 (Nm) (6—3)得Fx1 = Fx3 = Fx5 = Fx7=3596.67≈3.597 (KN)由 y 方向平衡有: FAX + FBX = -4 x Fx1 = -14.387 (KN) (6—4) 由對 A 點力矩平衡有:FBX( L1+L2+L3+L4+L5) + Fx7( L1+L2+L3+L4) +Fx5( L1+L2+L3) + Fx3( L1+L2) + Fx1 x L1=0 (6—5)由(6—4) , (6—5)兩式解得:FAX = -8.417(KN) , FBX = -5.970(KN)根據(jù)上述簡圖,按水平面計算各力產(chǎn)生的彎矩,作出彎矩 MH圖如下:湖南科技大學大學本科畢業(yè)論文26根據(jù)總計算簡圖,作出 YOZ 面上的受力圖如下:6.5.3 求出垂直面(YOZ 面)上各力由前面算得葉片總彎矩 M=98542.4Nm,且由分析的 Fy1 = Fy3 = Fy5 = Fy7, 有Fy1 x 0.575 x 4 = M =98542.4(Nm) (6—6)得Fy1 = Fy3 = Fy5 = Fy7,= 98542.4/4≈42.845 (KN)由 X 方向平衡有: FAy–Fy1–Fy3–Fy5–Fy7=0 (KN) (6—7)得FAy = 171.378(KN)由攪拌臂的質(zhì)量為 100kg,且攪拌臂的轉(zhuǎn)速 n 為 25r/min,半徑為0.575m,可算的向心力:FZ1= FZ3 = FZ5 = FZ7 = m r w2 = 100 x 0.575x(nπ/30) 2=0.394 KN (6—8)由 Z 方向平衡有:FAZ + FBZ= 4 FZ1 (6—9)JS2000C 型混凝土攪拌主機設計27由對 A 點力矩平衡有:FBZ( L1+L2+L3+L4+L5)- FZ7( L1+L2+L3+L4)-FZ5( L1+L2+L3)- FZ3( L1+L2)- FZ1 x L1=0 (6—10)由(6—8) , (6—9)兩式解得:FAZ = -0.922(KN) , FBZ = -0.654(KN)根據(jù)上述簡圖,按垂直面計算各力產(chǎn)生的彎矩,作出彎矩 Mv圖如下:6.5.4 根據(jù)水平面和垂直面的彎矩圖作出總彎矩圖 M 總?cè)缦拢浩涔綖椋?6—VHM??總11)6.5.5 由扭矩平衡作出扭矩圖JS2000C 型混凝土攪拌主機設計29作出 αT 的彎矩圖如下:6.5.6 由 M 總 和扭矩圖合成作出計算扭矩圖 Mca(6—??22aTca??12)其中 α 取為 0.7從上面的總計算彎矩圖可以清楚的看出危險截面為Ⅳ-Ⅴ段的第五根攪拌臂位置。:校核如下:6.5.7 攪拌軸截面模量 W 的計算易知 B 點坐標為(90,0),設 A 點坐標為(z,80),由 z2+y2 =902,解得: ≈41.23.2809??Z∴ A 點坐標為(z,80), ∴ 直線 AB 方程為: y=-1.64z+147.6湖南科技大學大學本科畢業(yè)論文30∴ ( 由圖形的對稱性和被積函數(shù)為偶函數(shù))dAyIy2??14)(212dAyyA???(6—??dyxdxx26.147.0923.4803.410 ???13)=281463460.667mm4+20795320.271mm4=302258780.938mm4∴ W= Iy /80=3778234.87mm3σ ca=Mca/W=72.216KNm/3778234mm3=19.1137Mpa<[σ -1]=60Mpa (6—14)故所設計的軸滿足強度要求,故安全。JS2000C 型混凝土攪拌主機設計31第 七 章 軸 承 校 核根據(jù)工作條件,決定選用雙列圓錐滾子軸承,設軸運轉(zhuǎn)中有中等沖擊載荷,工作溫度小于 150 度,壽命為三年.(一年按 300 天計算)時間根據(jù)滾動軸承樣本或機械設計手冊第三版第二卷表 7-2-69,可知 3113732 軸承的基本額定負荷KN: Cr=1530KN , Cor =1854KN; 計算系數(shù)為 e=0.34, Y1=2.9 ,Y2=2.0,Y0 =2.0;7.1 求兩軸承受到的徑向載荷 R1和 R2由第六章算的 FAX= -8.417KN, FAZ= -0.922KN, FBX= -5.97KN, FBZ= -0.654KN FAY=171.378KN;R1= (7—2AZX?1)= =8.472KN,??29.0)47.8(?R2= (7—2BZXF2)= =6.006KN;??22654.0)97.5(??徑向載荷 R= (7—213)= =10.385KN 2206.47.8?7.2 求兩軸承的計算軸向力 A1和 A2對于圓錐滾子軸承有[2]中按表 13-7,軸承內(nèi)部附加軸向力 S=R/2Y,式中 Y 為對應[2]中表 13-5 中 A/R> e 的 Y 值. 由機械設計手冊第三版第二卷表 7-2-71 仿照雙列圓錐滾子軸承的計算公式:當量動載荷: 當 Fa/Fr ≤e, Pr= Fr + Y1Fa; 湖南科技大學大學本科畢業(yè)論文32(7—4)Fa/Fr > e, Pr= 0.67Fr + Y2Fa; (7—5)其中 F r為徑向載荷; Fa為軸向載荷; Pr為當量動載荷.當量靜負荷: Por= Fr + YoFa; (7—6)Fa,Fr均為作用于軸承上的總載荷因為 Fa/ Fr =FAY/R=171.378/10.385=16.5>e,所以當量動載荷Pr= 0.67Fr + Y2Fa=0.67x10.385+2.0x171.3=349.558KN查表[3]中表 7-2-4~7-2-7, f p=1.2 ,f t=0.90, f h=3.07 ,f n=1.090, f m=1式中 f p—沖擊載荷系數(shù), 按[3]中表 7-2-6 選取;f t—溫度系數(shù),按[3]中表 7-2-7 選取;f h—壽命系數(shù),按[3]中表 7-2-4 選取;f n —速度系數(shù), 按[3]中表 7-2-5 選取;f m —力矩負荷系數(shù),力矩較小時 1,力矩負荷較大時 2.根據(jù)[3]中式(7-2-1) C=( f hf p f m/ f nf t) Pr =3.755x349.558=1312.590KN.又所選的軸承 Cr=1530KN>1312.590KN,故所選的軸承合適. JS2000C 型混凝土攪拌主機設計33第八章 軸承潤滑密封理論與潤滑系統(tǒng)設計對于潤滑方法的選擇,有采取集中潤滑、手動潤滑和采用班前班后手動快速加油等三種。大的方面,對于潤滑系統(tǒng),可系統(tǒng)地分為下面幾大部件:第進分油器、濃油泵(含安全閥) 、油管和接頭總成、油嘴螺母、安裝塊1、安裝塊 2、直通式壓油杯、過濾器、氣動泵、氣壓力表等九大部分組成。需要潤滑的地方是軸端密封處、骨架油封處、卸料門軸承、主軸承等幾大部位。則需要潤滑的注油地方是:1.軸端密封注油點油杯、2.骨架油封注油點油杯、3.卸料門軸承注油點油杯、4.主軸承注油點油杯、6.油缸注油點油杯。其中,采用集中潤滑的有:減速機端右軸軸端密封點、減速機左軸軸端密封點、濃油泵端左軸軸端密封點、濃油泵端右左軸軸端密封點。采用手動潤滑有:濃油泵端左軸骨架軸端密封點、濃油泵端右左軸骨架軸端密封點、濃油泵端左軸軸承密封點、濃油泵端右左軸軸承密封點、濃油泵端卸料門軸承點、濃油泵端油缸潤滑點 A、濃油泵端油缸潤滑點 B、減速機端右軸骨架油封密封點、減速機端左右軸骨架油封密封點、減速機端左軸軸承密封點、減速機端右左軸軸承密封點、減速機端卸料門軸承。采用班前班后手動快速加油的有:濃油泵端左軸軸承快速注油點、濃油泵端左軸軸承快速注油點、減速機端右軸軸端快速注油點、減速機端左軸軸端快速注油點。8.1 脂潤滑 當滾動軸承速度較低( dn≤2x10
收藏